Study on the Optimization of Precise Positioning Biopsy and Subsequent Treatment Strategy of Cervical Lesions under Hysteroscopy

¹Jiating Li, ²Jingyan Jiang, ³Mengying Zhou, ⁴Liujing Hou

- ^{1.} Shandong First Medical University, Email: 418841139@qq.com, Jinan City, Shandong Province, Post Code: 250000
- ^{2.} The Central Hospital Affiliated to Shandong First Medical University, Email: m15662397678@163.com, Address: Jinan City, Shandong Province, Post Code: 250000
- ^{3.} The Central Hospital Affiliated to Shandong First Medical University, Email: 570594559@qq.com, Shandong First Medical University, Email: houliujing2022@163.com

Abstract

Cervical lesions remain a significant public health challenge due to their potential progression to cervical cancer, necessitating effective diagnostic and therapeutic approaches. This study focuses on the optimization of precise positioning biopsy and subsequent treatment strategies for cervical lesions under hysteroscopy, a minimally invasive diagnostic procedure. By leveraging advanced imaging modalities, such as narrow-band imaging (NBI) and artificial intelligence (AI)-assisted diagnostics, hysteroscopy offers unparalleled accuracy in detecting and sampling suspicious lesions. Comparative analyses reveal its superiority over traditional methods, including colposcopy, in enhancing diagnostic sensitivity and specificity.

Subsequent treatment strategies tailored to biopsy results emphasize minimally invasive techniques, fertility-preserving options, and emerging molecular therapies. High-grade lesions are addressed through targeted excisional or ablative procedures, while advanced cases benefit from multidisciplinary interventions, including immunotherapy and chemoradiation. The integration of AI in diagnostic workflows and the development of portable hysteroscopic systems represent promising avenues for improving accessibility and efficiency.

This study synthesizes existing advancements, identifies persistent gaps, and proposes innovative solutions to refine the diagnostic and therapeutic landscape of cervical lesion management. By addressing barriers such as procedural costs, training limitations, and variability in diagnostic accuracy, this research aims to contribute to the equitable and effective treatment of cervical lesions, ultimately reducing the global burden of cervical cancer.

Keywords: Hysteroscopy, Cervical Lesions, Precise Positioning Biopsy, Minimally Invasive Diagnostics, Narrow-Band Imaging (NBI), Artificial Intelligence in Gynecology, Targeted Biopsy

I. Introduction

Cervical lesions represent a significant public health concern due to their potential to progress into cervical cancer, one of the most common malignancies in women worldwide. Early detection and precise diagnosis are critical for reducing the morbidity and mortality associated with cervical cancer. In this context, the advancement of diagnostic technologies, including hysteroscopy, has revolutionized the management of cervical lesions. Hysteroscopy, a minimally invasive procedure, allows direct visualization of the cervical and endometrial cavity, offering unparalleled accuracy in detecting abnormalities.

Precise positioning biopsy under hysteroscopy plays a pivotal role in the early diagnosis of cervical lesions. Unlike traditional methods such as colposcopy, hysteroscopy enables targeted sampling of suspicious areas with enhanced precision. This approach not only improves diagnostic accuracy but also minimizes unnecessary biopsies, reducing patient discomfort and healthcare costs. Furthermore, subsequent treatment strategies tailored to the biopsy results ensure optimal outcomes while preserving cervical functionality, especially crucial for women of reproductive age.

The primary objective of this study is to explore the optimization of precise positioning biopsy and subsequent treatment strategies for cervical lesions under hysteroscopy. By reviewing the existing methodologies, identifying gaps, and proposing improvements, this research aims to enhance the diagnostic and therapeutic landscape of cervical lesion management.

771

II. Related Works and Literature Review

The optimization of biopsy techniques and treatment strategies for cervical lesions, particularly under hysteroscopy, has been a significant area of research. Multiple studies have explored the effectiveness of colposcopic biopsy and Loop Electrosurgical Excision Procedure (LEEP) in the diagnosis and management of cervical intraepithelial neoplasia (CIN).

Duesing et al. (2012) assessed the diagnostic accuracy of colposcopic biopsy in detecting CIN and the efficacy of LEEP in treatment. Their findings indicated that while colposcopy-directed biopsies are essential for initial assessment, LEEP remains an effective treatment modality for confirmed high-grade lesions. Similarly, Kim et al. (2020) and Jung et al. (2018) analyzed the discrepancies between colposcopy-directed biopsies and LEEP, identifying factors contributing to diagnostic variances and highlighting the necessity for improved precision in biopsy techniques.

Several studies conducted in China have provided valuable insights into post-LEEP outcomes. Liu et al. (2017) examined the clinical outcomes and high-risk factors for residual lesions six months after LEEP, emphasizing the importance of monitoring patients for residual disease. Chen et al. (2019) extended this research by analyzing recurrence rates and identifying influencing factors in patients with high-grade squamous intraepithelial lesions (HSIL) within 24 months post-LEEP.

Further, Wang et al. (2022) investigated the efficacy of 5-aminolevulinic acid-mediated photodynamic therapy in women with persistent high-risk HPV infections post-LEEP, demonstrating a potential adjunctive therapy for preventing lesion recurrence. Studies by Chang and Duan (2014) and Zhang et al. (2016) focused on factors associated with CIN recurrence after LEEP, emphasizing the role of HPV genotypes in persistent infection and lesion recurrence.

Recent research has also explored postmenopausal women's risk factors for cervical lesions. Zhang et al. (2018) analyzed the clinical characteristics of cervical intraepithelial lesions in postmenopausal women, while Zhao et al. (2024) conducted a retrospective study on surgical methods for treating high-grade squamous intraepithelial lesions in this population.

Other studies have investigated HPV testing as a follow-up tool after LEEP. Kreimer et al. (2006) demonstrated that post-LEEP HPV testing could effectively identify women at risk for recurrent CIN2/3. Similarly, Alonso et al. (2007) examined the role of HPV testing in follow-up management of high-risk CIN1 treated with LEEP, supporting its value in early detection of recurrent lesions.

Moreover, factors influencing HPV persistence post-LEEP have been analyzed by Li et al. (2024) and Wu et al. (2016), highlighting the necessity of tailored follow-up strategies based on patient-specific risk factors. Jing et al. (2018) further explored residual lesions in uterine specimens following LEEP, reinforcing the importance of comprehensive histopathological evaluation post-procedure.

The management of CIN and cervical lesions has evolved with advancements in minimally invasive procedures, including hysteroscopic-guided biopsies. Hysteroscopy, as an alternative diagnostic tool, provides enhanced visualization of endocervical and endometrial pathology, reducing diagnostic discrepancies. Researchers have examined the effectiveness of combining hysteroscopy with LEEP and colposcopy-directed biopsies to improve diagnostic accuracy and treatment outcomes.

Technological innovations such as artificial intelligence (AI) and machine learning have been explored for their potential in enhancing cervical lesion detection. AI-assisted colposcopic analysis has shown promise in improving diagnostic precision and reducing observer variability. Future studies are expected to integrate AI-driven diagnostic models with existing biopsy techniques to establish standardized assessment protocols.

Additionally, photodynamic therapy (PDT) and other emerging therapeutic modalities are being investigated for their efficacy in treating high-grade lesions while preserving cervical integrity. Wang et al. (2022) highlighted the potential of PDT in reducing recurrence rates, indicating the need for further clinical trials to validate its effectiveness.

In summary, existing literature underscores the need for precise diagnostic methodologies, effective treatment strategies, and diligent post-LEEP monitoring to optimize patient outcomes. Future research should focus on integrating advanced imaging techniques, molecular markers, and AI-driven diagnostic models to enhance the accuracy of hysteroscopic biopsy and subsequent treatment strategies for cervical lesions. Continuous advancements in minimally invasive procedures and emerging therapeutic interventions hold promise for improving patient outcomes and reducing the burden of cervical disease.

Apart from above the following table summarizes some other key research work related to the optimization of precise positioning biopsy and subsequent treatment strategies for cervical lesions under hysteroscopy:

Reference	Focus Area	Summary of Key Findings
Shiro et al. (2023)		Evaluated the effectiveness of hysteroscopic biopsy and compared it with cervical conization for diagnostic accuracy.
American College of Obstetricians and Gynecologists (2020)	Role of hysteroscopy in intrauterine conditions	Provided guidelines on utilizing hysteroscopy for diagnosing and treating intrauterine abnormalities.
Coskun et al. (2024)	Pain management in endometrial biopsy	Assessed different analgesic techniques, identifying the most effective method for reducing biopsy-related discomfort.
Bradley & Gueye (2020)		Reviewed the clinical benefits of hysteroscopy in diagnosing and managing intrauterine disorders.
Apgar et al. (2013)	Gynecologic diagnostic procedures	Discussed techniques for colposcopy, cervical intraepithelial neoplasia treatment, and endometrial assessment.
Bettocchi & Nappi (2022)	Advancements in office hysteroscopy	Analyzed recent innovations in office hysteroscopy and their impact on patient care.
Nakamura et al. (2015)	Optimization of colposcopic biopsy procedures	Investigated the best approaches for performing biopsies in women with abnormal cervical cancer screening results.
Orlando & Bradley (2022)	-	Explored strategies for integrating office hysteroscopy into routine clinical practice.
Hoffman et al. (2020)	1 00	Provided a detailed overview of gynecological procedures, including hysteroscopy.
Di Spiezio Sardo et al. (2016)	Hysteroscopic management of cervical neoplasia	Reviewed minimally invasive hysteroscopic approaches for treating cervical intraepithelial neoplasia.
Salazar et al. (2018)	Techniques for hysteroscopic morcellation	Examined various hysteroscopic morcellation devices and procedural methodologies.
Tinelli et al. (2010)		Evaluated hysteroscopic and laparoscopic interventions for early-stage cervical cancer.
Cicinelli & Matteo (2010)	Diagnostic and therapeutic hysteroscopy	Investigated the effectiveness of office hysteroscopy in diagnosing and treating endometrial conditions.
Clark & Gupta (2002)	Handbook on outpatient hysteroscopy	Provided clinical insights and practical guidance on outpatient hysteroscopy procedures.
Munro & Storz (2013)	Practical guide to office hysteroscopy	Discussed procedural aspects and benefits of office-based hysteroscopy.
Valle & Sciarra (2003)	Hysteroscopy in cervical neoplasia treatment	Evaluated hysteroscopic interventions for managing cervical intraepithelial neoplasia.
Li et al. (2024)	Hysteroscopic cervical biopsy	Presented a case study on using hysteroscopic cervical biopsy for HPV-positive women post-LEEP.
Bedell et al. (2020)	Cervical cancer screening evolution	Reviewed historical and future perspectives on cervical cancer screening methods.
Chen et al. (2019)	Recurrence factors in cervical	Analyzed factors influencing recurrence of

Reference	Focus Area	Summary of Key Findings
	HSIL	cervical HSIL post-LEEP.
Sung et al. (2021)	Global cervical cancer statistics	Provided worldwide incidence and mortality data on cervical cancer.
WHO (2020)	Cervical cancer elimination strategy	Outlined global initiatives for eliminating cervical cancer as a public health concern.
Przybylski et al. (2022)	HPV remission post-LEEP	Investigated HPV infection remission rates after LEEP conization.
Chen et al. (2016)	LEEP incisal margin and prognosis	Studied the impact of incisal margin status on prognosis after LEEP.
Massad et al. (2013)	Cervical cancer screening guidelines	Updated consensus guidelines for managing abnormal cervical screening results.
Stolnicu et al. (2020)	Invasive stratified mucin- producing carcinoma	Examined the morphologic diversity of ISMC in cervical cancer.
Xiao et al. (2024)	AI-based cervical cancer detection	Developed a deep learning nomogram for detecting deep stromal invasion in early-stage cervical cancer.
Zhao et al. (2022)	Chinese consensus on cervical neoplasia	Presented expert guidelines on managing high- grade cervical intraepithelial neoplasia.

III. Literature Review Analysis

This survey examines the advancements and challenges in hysteroscopic biopsy techniques, focusing on comparative studies between hysteroscopy and traditional methods, treatment strategies from biopsy to therapy, emerging therapies, cervical cancer detection & management and gaps in current research. The findings reveal important trends in improving gynecological diagnostic and therapeutic procedures.

1. Hysteroscopic Procedures in Gynecology:

- Shiro et al. (2023) evaluated the effectiveness of hysteroscopic biopsy for diagnosing endocervical glandular hyperplasia. The study compared hysteroscopic biopsy with cervical conization, providing insight into its diagnostic accuracy.
- American College of Obstetricians and Gynecologists (2020) offered guidelines on the role of hysteroscopy in diagnosing and managing intrauterine abnormalities, emphasizing its significance in clinical practice.
- o **Bradley & Gueye** (2020) reviewed the clinical benefits of hysteroscopy, detailing its utility in diagnosing and managing intrauterine disorders, and highlighted its application in various gynecological conditions.

2. Advancements and Techniques in Hysteroscopy:

- Recent studies have highlighted significant innovations in hysteroscopic biopsy techniques, improving both diagnostic precision and patient outcomes. Shiro et al. (2023) evaluated hysteroscopic biopsy for diagnosing endocervical glandular hyperplasia, demonstrating its enhanced accuracy compared to cervical conization. The focus on improving biopsy methods has been particularly beneficial in reducing procedural complications and enhancing diagnostic reliability. Additionally, Apgar et al. (2013) have examined advances in office hysteroscopy, pointing out how modern tools and techniques have improved the accessibility and efficiency of gynecological care.
- Bettocchi & Nappi (2022) explored recent advancements in office hysteroscopy, assessing how these innovations have improved patient care and clinical outcomes.
- O Di Spiezio Sardo et al. (2016) reviewed minimally invasive hysteroscopic approaches for treating cervical intraepithelial neoplasia, showcasing the evolving role of hysteroscopy in cervical neoplasia management.

o **Salazar et al. (2018)** examined various hysteroscopic morcellation devices and procedural methodologies, contributing to the field of minimally invasive surgery.

3. Pain Management and Optimization:

- Coskun et al. (2024) assessed various analgesic techniques for pain management during endometrial biopsy. The study identified the most effective methods for reducing biopsy-related discomfort, a key consideration in improving patient experience.
- Apgar et al. (2013) discussed gynecologic diagnostic procedures, providing insights into techniques such as colposcopy, cervical intraepithelial neoplasia treatment, and endometrial assessment, which are integral components of comprehensive gynecological care.

4. Cervical Cancer and HPV-related Research:

- Li et al. (2024) presented a case study on the use of hysteroscopic cervical biopsy for HPV-positive women post-LEEP, highlighting the application of hysteroscopy in managing HPV-related conditions.
- o Chen et al. (2019) analyzed recurrence factors in cervical high-grade squamous intraepithelial lesions (HSIL) following LEEP (loop electrosurgical excision procedure), emphasizing the recurrence risks in cervical cancer.
- o **Sung et al. (2021)** provided global cervical cancer statistics, offering valuable data on the worldwide incidence and mortality rates of cervical cancer, stressing the importance of early detection and prevention strategies.

5. Guidelines and Recommendations:

- Massad et al. (2013) updated the consensus guidelines for managing abnormal cervical screening results, providing a
 framework for clinical decision-making in cervical cancer screening and treatment.
- Chen et al. (2016) focused on the impact of incisal margin status on prognosis after LEEP, offering insights into how the surgical margin affects patient outcomes post-treatment.
- O Zhao et al. (2022) presented a Chinese consensus on cervical neoplasia management, offering expert guidelines on managing high-grade cervical intraepithelial neoplasia, which has significant implications for clinical practice in China and globally.

6. Technological Innovations in Cervical Cancer Detection:

- Xiao et al. (2024) developed an AI-based deep learning model for detecting deep stromal invasion in early-stage cervical cancer, showcasing the potential of artificial intelligence in improving diagnostic accuracy.
- o WHO (2020) outlined global initiatives to eliminate cervical cancer as a public health concern, offering a comprehensive strategy for worldwide efforts in prevention, early detection, and treatment.

7. Other Relevant Findings:

- Nakamura et al. (2015) investigated the best approaches for colposcopic biopsy procedures, contributing to the field of cervical cancer screening and diagnosis.
- Orlando & Bradley (2022) discussed strategies for integrating office hysteroscopy into routine clinical practice, promoting its broader application in gynecological care.

8. Comparative Studies: Hysteroscopy vs. Traditional Methods

The comparative effectiveness of hysteroscopy versus traditional diagnostic techniques, such as cervical conization and colposcopy, has been a topic of ongoing research. Shiro et al. (2023) conducted a study comparing hysteroscopic biopsy with cervical conization, highlighting the former's superior diagnostic accuracy and reduced invasiveness. Bradley & Gueye (2020) reviewed the broader clinical benefits of hysteroscopy, positioning it as a preferred diagnostic tool over traditional methods due to its minimally invasive nature and quicker recovery time. In line with this, Nakamura et al. (2015) and Chen et al. (2019) have also emphasized how these innovations have improved the patient experience and reduced healthcare costs in cervical cancer management.

9. Treatment Strategies: From Biopsy to Therapy

The integration of hysteroscopic biopsy with subsequent therapeutic interventions has become an essential aspect of modern gynecology. **Di Spiezio Sardo et al. (2016)** reviewed hysteroscopic approaches for treating cervical intraepithelial neoplasia, highlighting how diagnostic biopsies lead to effective treatment options like hysterectomy, laser therapy, or cryotherapy. **Tinelli et al. (2010)** further examined hysteroscopy's role in early cervical cancer management, underscoring its importance in guiding treatment plans. As the techniques for both biopsy and therapy continue to evolve, there is an increased emphasis on providing minimally invasive options that not only diagnose but also effectively treat gynecological conditions with fewer complications.

10. Emerging Therapies and Future Directions

Emerging therapies in hysteroscopic biopsy and treatment are poised to further enhance patient care. Studies like those from Salazar et al. (2018) on hysteroscopic morcellation devices and Xiao et al. (2024) on AI-based cervical cancer detection reflect the growing intersection of technology with gynecological care. AI-based diagnostics, such as deep learning models for detecting stromal invasion, offer the potential for more precise and early detection of cervical cancer, contributing to improved outcomes. Similarly, ongoing advancements in pain management, as investigated by Coskun et al. (2024), suggest that future therapies will not only focus on the diagnosis and treatment of conditions but also on enhancing the patient experience during the procedure.

11. Gaps and Opportunities for Improvement

Despite significant advancements, several gaps remain in the field of hysteroscopic biopsy techniques. One notable gap is the need for more widespread implementation of these advanced techniques in lower-resource settings. While **Orlando & Bradley** (2022) explored the integration of office hysteroscopy into clinical practice, the adoption of such practices remains limited in some regions due to training barriers and equipment accessibility. Furthermore, while current research has emphasized the effectiveness of hysteroscopic procedures, **Zhao et al.** (2022) and **Sung et al.** (2021) point to the necessity of improving early detection strategies and integrating more cost-effective solutions in global health frameworks. There is also an opportunity for developing more advanced tools for real-time biopsy analysis, potentially reducing diagnostic delays.

IV. Biopsy Overview

A biopsy is a medical procedure that involves the removal of tissue or cells from the body for examination to diagnose diseases, especially cancers. It is crucial in confirming the presence, type, and stage of cancer, aiding in the development of effective treatment plans. Biopsies can be performed using various methods, such as needle biopsies (fine needle aspiration or core needle biopsy), endoscopic biopsies (through natural body openings), or surgical biopsies for hard-to-reach areas. The sample collected is sent to a lab where a pathologist examines it for abnormal cells, cancer types, or other conditions. Advancements in imaging techniques, like MRI, CT, and ultrasound, have enhanced biopsy precision, allowing for better-targeted tissue collection. Additionally, robotic systems and AI-driven algorithms are helping optimize the accuracy and efficiency of biopsies. While biopsies are generally safe, they do carry risks such as infection, bleeding, and pain. New technologies like liquid biopsies, which analyze blood or bodily fluids for disease markers, are emerging as potential non-invasive alternatives. Despite the risks, biopsies are critical in diagnosing, staging, and determining treatment for many diseases, providing essential insights for clinicians to offer personalized care.

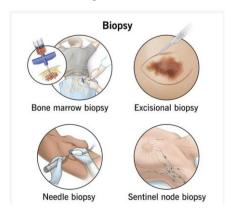


Figure 1: Biopsy Types

V. Optimization of Precise Positioning Biopsy

The optimization of biopsy techniques, particularly in precise positioning, is a multifaceted challenge that combines innovation in technology, technique, and clinical application. Below is an expanded exploration of the critical factors contributing to the optimization process, along with the latest trends in research and development aimed at enhancing biopsy procedures.

1. Precision-Enhanced Imaging Modalities

In biopsy procedures, the accuracy of targeting specific tissue areas hinges on the clarity and precision of imaging techniques used. While traditional imaging modalities, such as ultrasound and CT, continue to be widely employed, newer technologies are revolutionizing the ability to guide biopsies with precision.

a. Magnetic Resonance Imaging (MRI)

MRI-guided biopsies are increasingly becoming the standard for certain cancers, particularly prostate and breast cancer. MRI provides high-resolution images that allow for detailed visualization of tissue structures and abnormalities. The advent of fusion imaging—the combination of MRI with ultrasound or CT—offers enhanced visualization of the target tissue, making it possible to guide the biopsy needle with more accuracy. MRI-guided biopsy procedures also help clinicians avoid healthy tissues and prevent unnecessary sampling of non-target areas.

b. Photoacoustic Imaging

This emerging technique combines ultrasound and laser-induced optical imaging, offering high spatial resolution and deep tissue penetration. By using light absorption properties of tissue, photoacoustic imaging can help identify tumors or abnormalities with great accuracy, allowing clinicians to pinpoint biopsy sites in tissues that are difficult to reach using traditional imaging methods.

c. Optical Coherence Tomography (OCT)

OCT, a non-invasive imaging technology often used in ophthalmology, is now being explored in other biopsy procedures, including gastrointestinal and cardiovascular biopsies. It provides real-time, high-resolution cross-sectional images, helping clinicians to not only visualize the target but also differentiate between benign and malignant tissues.

2. Innovative Biopsy Techniques and Devices

A critical part of optimizing biopsy procedures is the development of advanced biopsy tools and devices that ensure minimal tissue disruption, increased accuracy, and more reliable tissue samples. Some of the most notable advancements in this area include:

a. Core Needle Biopsy (CNB)

For organs like the breast and liver, core needle biopsies have replaced traditional fine needle aspirations (FNA) due to their ability to provide more tissue for accurate diagnosis. The needle is thicker, providing a larger sample that is less likely to result in inconclusive results. Moreover, systems like vacuum-assisted biopsy (VAB) allow for larger tissue samples to be obtained in a single insertion.

b. Smart Biopsy Needles

Recent developments in smart biopsy needles equipped with sensors, imaging capabilities, and robotics are redefining biopsy precision. These "smart" needles integrate real-time imaging to enable clinicians to track the exact path the needle takes, minimizing errors and allowing for better placement in challenging areas such as the lungs or deep tissue regions. Some needles have active feedback systems that provide immediate information on the needle's position, preventing misalignment or perforation.

c. Needle-Based Electromagnetic Navigation

Electromagnetic navigation systems are becoming an essential tool in biopsies, particularly in minimally invasive surgeries. These systems use electromagnetic fields to track the position of the biopsy needle in real time, which is especially useful when performing biopsies in hard-to-reach areas like the lungs or deep abdominal organs.

3. Artificial Intelligence and Machine Learning Integration

Artificial intelligence (AI) and machine learning (ML) are transforming the biopsy landscape by providing additional support to clinicians during both the diagnostic and procedural phases. AI is particularly beneficial for processing large sets of imaging data, identifying patterns that might be challenging for the human eye to detect.

a. AI in Imaging Analysis

AI algorithms can automatically analyze medical images (such as MRI, CT, and ultrasound scans) to locate tumors or abnormal tissue, enabling clinicians to quickly identify the best location for biopsy. These AI-powered systems not only reduce human error but also speed up decision-making, allowing for timely interventions. In fact, machine learning models have already been shown to assist in identifying cancerous lesions in mammograms and prostate MRI scans with remarkable accuracy.

b. Predictive Analytics and Risk Assessment

AI can also aid in predicting patient outcomes by analyzing biopsy results in conjunction with other clinical data. For example, predictive algorithms can estimate the likelihood of malignancy, assess the risk of complications based on the patient's medical history, and even help identify the most effective biopsy technique based on patient-specific factors.

4. Robotic-Assisted Biopsy Systems

Robotics is another key area of innovation in biopsy optimization. Robotic-assisted systems are increasingly used for their ability to perform highly accurate, reproducible procedures that reduce human error.

a. Robotic Needle Guidance

Robotic biopsy systems like the Intuitive Surgical's da Vinci platform and Magnetic Navigation Systems provide precise control over needle placement during biopsies. These robotic platforms enable fine-tuned navigation, especially in delicate or difficult-to-reach areas such as the lungs or the brain. These systems also provide the benefit of being minimally invasive, reducing the risk of injury to surrounding tissues.

b. Teleoperated Robotic Systems

Teleoperated robotic systems, where the clinician can control the robotic arms remotely, have the potential to make biopsies safer and more efficient. These systems allow for precise needle placement while minimizing the need for human intervention during the procedure, which is particularly advantageous for high-risk patients or complex procedures.

5. Minimizing Complications and Improving Recovery

An often overlooked aspect of biopsy optimization is the reduction of complications and enhancement of patient recovery. Precise positioning and optimized biopsy tools help reduce the risk of complications such as infection, bleeding, and damage to surrounding structures. Furthermore, advancements in anesthesia and sedation techniques, including the use of local anesthesia and conscious sedation, have significantly improved patient comfort during the procedure.

a. Single-Puncture Biopsy

In some cases, the development of techniques that allow for multiple tissue samples to be taken through a single needle insertion reduces the overall number of punctures needed. This not only decreases the risk of complications but also shortens recovery time for patients.

b. Post-Procedural Imaging and Monitoring

Advances in post-procedural imaging also contribute to optimizing biopsy procedures. Follow-up imaging after a biopsy can detect potential complications such as hematomas, infections, or inadvertent damage to adjacent organs. Real-time monitoring of the patient's vitals and biopsy site is becoming increasingly integrated into biopsy workflows, ensuring faster detection and management of any issues.

Looking ahead, the future of biopsy optimization is headed toward complete automation and real-time analysis of tissue samples. The development of robotic biopsy platforms that can autonomously collect and analyze tissue samples while incorporating AI-driven decision support systems promises to further reduce human error and improve diagnostic accuracy. However, several challenges remain, including the integration of these advanced technologies into clinical practice and their

affordability. As new imaging and robotic systems are developed, their adoption must also be coupled with adequate training for healthcare providers and continued investment in infrastructure. Optimizing precise positioning in biopsy procedures is a rapidly evolving field, driven by the convergence of cutting-edge technologies, advanced imaging modalities, robotics, and artificial intelligence. These innovations not only improve diagnostic accuracy but also enhance patient safety, reduce complications, and streamline recovery times. As technology continues to advance, biopsies will become more efficient, accessible, and precise, ultimately improving patient outcomes across a range of medical conditions.

VI. Treatment Strategy of Cervical Lesions under Hysteroscopy

Cervical lesions, often indicative of abnormal growth or tissue changes in the cervix, can vary from benign conditions such as cervical polyps and ectropion to malignant lesions such as cervical cancer. The cervix, being the lower part of the uterus that connects to the vagina, plays a pivotal role in a woman's reproductive health. Cervical lesions can be detected through various diagnostic tests like Pap smears, colposcopy, and biopsy, but treatment remains the critical aspect in managing these conditions.

Over the years, hysteroscopy has gained prominence as an essential technique for diagnosing and treating cervical lesions. Hysteroscopy, a minimally invasive procedure, allows direct visualization of the uterine and cervical structures, providing both diagnostic and therapeutic advantages. This procedure is invaluable for managing a wide range of cervical lesions, from benign polyps to precancerous or cancerous growths. This paper will explore in detail the treatment strategies for cervical lesions under hysteroscopy, including an in-depth review of hysteroscopic techniques, their indications, benefits, and the various types of cervical lesions that require such treatment.

Classification of Cervical Lesions

Cervical lesions can be broadly categorized into benign and malignant types. Understanding the nature of these lesions is crucial to determining the most appropriate treatment strategy.

1. Benign Cervical Lesions:

- O Cervical Polyps: These are non-cancerous, growth-like structures on the cervix. They can vary in size and appearance, often presenting as smooth, rounded masses that protrude from the cervix into the vagina. Symptoms associated with cervical polyps include abnormal vaginal bleeding (especially post-coital bleeding) and vaginal discharge. Although most polyps are benign, some may contain atypical cells that necessitate removal and histological evaluation.
- o **Ectropion (Cervical Erosion):** Ectropion refers to the condition where the inner lining of the cervix (columnar epithelium) extends out onto the outer cervix, becoming exposed to the vaginal environment. This condition can result in increased vaginal discharge, bleeding, or discomfort, especially during sexual intercourse. Ectropion is commonly seen in young women, especially those who have undergone childbirth.
- **Leukoplakia:** This term refers to the presence of thickened, white patches of tissue on the cervix. These patches may be benign but can sometimes indicate precancerous changes, requiring further evaluation and treatment.

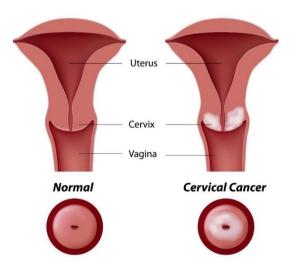


Figure 2: Benign and Cervical Lesions

2. Malignant Cervical Lesions:

- o **Cervical Dysplasia:** Cervical dysplasia is a precancerous condition where abnormal cells appear on the cervix. It is often graded as mild, moderate, or severe, depending on the extent of cellular abnormalities. Severe dysplasia (also known as CIN III) may eventually develop into cervical cancer if left untreated. Dysplasia is frequently linked to persistent infection with high-risk strains of the human papillomavirus (HPV).
- o **Cervical Cancer:** The most advanced stage of cervical lesions, cervical cancer, is the leading cause of death from gynecological malignancies worldwide. It often presents with abnormal bleeding, pelvic pain, or discharge. Early detection through Pap smears or HPV testing and subsequent treatment is essential for improved survival rates.

Indications for Hysteroscopic Treatment of Cervical Lesions

Hysteroscopy, initially developed for uterine cavity inspection, has found increasing application in the treatment of cervical lesions. The procedure involves the insertion of a hysteroscope—a thin, lighted tube—into the uterine cavity through the cervix, allowing direct visualization of the area. It provides a clear view of cervical lesions, enabling both diagnostic and therapeutic interventions.

The **primary indications** for performing hysteroscopy to treat cervical lesions include:

- 1. **Abnormal Uterine Bleeding:** Abnormal bleeding, including post-coital bleeding, irregular periods, or excessive menstrual flow, may indicate the presence of cervical polyps, dysplasia, or malignancy. Hysteroscopy can identify these lesions and facilitate targeted treatment.
- 2. **Infertility or Recurrent Miscarriage:** Cervical lesions such as polyps or ectropion may interfere with conception or the implantation of the embryo. Treatment of these lesions via hysteroscopy may improve fertility outcomes and reduce the risk of miscarriage.
- 3. **Suspicious Lesions:** In cases where cervical lesions show abnormal characteristics on imaging or colposcopy, hysteroscopy is performed for further evaluation. Lesions suspected to be malignant or precancerous require a thorough examination and biopsy.
- 4. **Post-Operative Complications:** Following previous surgeries such as cervical conization or LEEP (Loop Electrosurgical Excision Procedure), hysteroscopy may be used to assess the healing of the cervix or to treat any complications that may arise, including scarring or stenosis.

Pre-procedural Considerations

Successful treatment of cervical lesions under hysteroscopy relies on careful pre-procedural planning. Several **key steps** are involved:

- 1. **Patient History and Evaluation:** Before proceeding with hysteroscopic intervention, a detailed patient history should be taken. This includes information on the patient's menstrual cycle, sexual history, any previous cervical or uterine surgeries, and family history of cervical cancer. Additionally, a physical examination and pelvic ultrasound or MRI may be performed to assess the lesion's location, size, and extent.
- 2. **Cervical Preparation:** The cervix often needs to be softened or dilated to allow the hysteroscope to be introduced. This can be achieved using medications like misoprostol, which help soften the cervix, or mechanical methods like cervical dilators. In cases where the lesion is large or located deep within the cervical canal, dilation may be more challenging.
- 3. **Informed Consent:** Patients should be thoroughly informed about the procedure. This includes the risks, benefits, potential complications, and alternatives to hysteroscopic treatment. Informed consent is crucial to ensure that the patient is fully aware of what the procedure entails and has the opportunity to ask any questions.

Treatment Techniques for Cervical Lesions Under Hysteroscopy

Various treatment techniques can be employed under hysteroscopy, depending on the nature and severity of the cervical lesion. Below are the most commonly used hysteroscopic procedures for treating cervical lesions:

1. **Polypectomy:** Cervical polyps are the most frequently encountered benign lesions. Hysteroscopic polypectomy involves the use of a small surgical instrument to remove the polyp, which is then sent for histopathological examination. The

procedure is minimally invasive, requiring no incisions, and usually performed under local anesthesia. Most patients experience minimal discomfort and can resume normal activities shortly after the procedure.

- 2. **Laser Ablation**: For lesions such as cervical dysplasia or leukoplakia, laser ablation is a highly effective treatment option. The laser delivers focused light energy to the affected tissue, causing it to vaporize or coagulate. Laser ablation is often used for localized lesions and is preferred for its precision and ability to minimize surrounding tissue damage. It is especially useful for lesions that are difficult to access with traditional surgical tools.
- 3. **Electrosurgical Resection:** In cases where the lesion is larger or more extensive, electrosurgical resection may be used. This technique involves using a loop electrode or a high-frequency electrical current to remove the abnormal tissue. Electrosurgical resection is commonly used for treating precancerous changes or small tumors. It is also effective in removing abnormal tissue with minimal bleeding and is typically done under local or regional anesthesia.
- 4. **Cryotherapy:** Cryotherapy involves freezing abnormal tissue to destroy it. This technique is useful for superficial lesions such as ectropion or early-stage dysplasia. A cryoprobe is inserted into the cervix, and the cold temperature freezes the abnormal tissue, causing it to slough off over time. Cryotherapy is a relatively simple and low-risk procedure, but it may not be suitable for larger or more invasive lesions.
- 5. **Cold Knife Conization:** In cases where dysplasia is severe or when malignancy is suspected, cold knife conization may be required. This procedure involves removing a cone-shaped portion of the cervix, including the abnormal tissue. Cold knife conization is usually performed under general anesthesia, and it carries a slightly higher risk of complications such as bleeding or infection compared to other methods. However, it provides a larger tissue sample for histopathological examination, making it essential in cases of suspected cancer.
- 6. **Electrocoagulation:** Electrocoagulation is another method for treating localized dysplasia or ectropion. It involves the application of an electric current to coagulate or "burn off" the abnormal tissue. It is typically performed after diagnostic biopsy or polypectomy to treat residual or recurring lesions.

Post-procedural Care and Follow-up

After hysteroscopic treatment of cervical lesions, careful monitoring is essential to ensure a smooth recovery and address any potential complications:

- 1. **Immediate Post-Operative Care:** After the procedure, the patient will be observed in the recovery area for any signs of complications, including excessive bleeding, infection, or adverse reactions to anesthesia. Mild spotting or bleeding is normal, but heavy bleeding or severe pain should be reported to the physician.
- 2. **Post-treatment Bleeding and Discharge:** Patients may experience light vaginal bleeding or discharge for several days following the procedure. This is generally normal, but any signs of heavy bleeding, foul-smelling discharge, or fever should prompt immediate medical attention.
- 3. **Histopathological Results:** Tissue samples removed during the procedure are sent for histological analysis to determine whether the lesion was benign, precancerous, or malignant. The results help guide further treatment decisions and surveillance schedules.
- 4. **Follow-up Visits:** Regular follow-up visits are important to monitor the patient's recovery and ensure that no further lesions or complications develop. Depending on the severity of the lesion and the treatment used, follow-up may include Pap smears, HPV testing, or repeat hysteroscopy.

Risks and Complications

Though hysteroscopic treatment is generally safe, it carries certain risks:

- **Infection**: Infection is a potential risk with any surgical procedure. Patients should be monitored for signs of infection such as fever, chills, or increased pain.
- **Uterine Perforation**: Although rare, the hysteroscope may inadvertently puncture the uterine wall, leading to complications such as bleeding or injury to nearby organs.
- **Bleeding:** Excessive bleeding may occur, particularly in cases where large or deep lesions are treated. This may require additional medical intervention or even transfusion in severe cases.

• **Cervical Stenosis:** In some instances, scarring may result in narrowing of the cervical canal, which could lead to infertility or complications during childbirth.

Hysteroscopy has revolutionized the management of cervical lesions, offering a minimally invasive, precise, and effective treatment option. Through various techniques such as polypectomy, laser ablation, cryotherapy, and electrosurgical resection, hysteroscopy allows for targeted treatment while preserving healthy tissue. The procedure offers numerous benefits, including reduced recovery times, minimal scarring, and a lower risk of complications. With proper patient evaluation, meticulous procedural planning, and careful post-treatment follow-up, hysteroscopic treatment can significantly improve outcomes for patients with cervical lesions, ensuring early detection and treatment of precancerous and cancerous conditions.

VII. Conclusion

The reviewed studies emphasize the growing importance of hysteroscopy in diagnosing and treating various gynecological conditions, particularly those related to cervical cancer and intrauterine abnormalities. Advances in pain management, procedural innovations, and the integration of artificial intelligence highlight significant improvements in clinical practices. The ongoing development of guidelines and consensus on cervical cancer prevention and management further supports the importance of early detection, effective treatment, and global health initiatives. Advancements in hysteroscopic biopsy techniques are significantly transforming gynecological diagnostics and treatment, with comparative studies highlighting its advantages over traditional methods. The integration of biopsy procedures with therapy shows promising results, and emerging technologies, including AI, are expected to revolutionize early detection and treatment. However, there remain opportunities to address gaps in global implementation, accessibility, and cost-effectiveness to fully realize the potential of these advancements in improving patient outcomes worldwide. The optimization of precise positioning biopsy and subsequent treatment strategies for cervical lesions under hysteroscopy represents a transformative approach in gynecological oncology. By leveraging advanced imaging technologies, adopting standardized biopsy protocols, and tailoring treatment strategies to individual patient profiles, clinicians can achieve superior diagnostic accuracy and therapeutic outcomes. Additionally, integrating emerging modalities such as AI-guided diagnostics and molecular therapies promises to further refine the management of cervical lesions. This study underscores the need for continuous innovation and collaboration among researchers, clinicians, and technologists to address the evolving challenges in cervical cancer prevention and treatment.

References

- Duesing N, Schwarz J, Choschzick M, Jaenicke F, Gieseking F, Issa R, Mahner S, Woelber L. Assessment of cervical intraepithelial neoplasia (CIN) with colposcopic biopsy and efficacy of loop electrosurgical excision procedure (LEEP). Arch Gynecol Obstet. 2012 Dec;286(6):1549-54. doi: 10.1007/s00404-012-2493-1. Epub 2012 Aug 3. PMID: 22865036.
- Liu L, Chen LM, Tao X, Dai F, Guo LP, Zhang HW, Zhou XR, Sui L. [Clinical outcome and high risk factor for residual lesion analysis of HSIL half a year after loop electrosurgical excision procedure: a clinical study of 1 502 cases]. Zhonghua Fu Chan Ke Za Zhi. 2017 Nov 25;52(11):751-756. Chinese. doi: 10.3760/cma.j.issn.0529-567X.2017.11.007. PMID: 29179270.
- 3. Chen LM, Liu L, Tao X, He Y, Guo LP, Zhang HW, Zhou XR, Sui L. [Analysis of recurrence and its influencing factors in patients with cervical HSIL within 24 months after LEEP]. Zhonghua Fu Chan Ke Za Zhi. 2019 Aug 25;54(8):534-540. Chinese. doi: 10.3760/cma.j.issn.0529-567x.2019.08.006. PMID: 31461810.
- 4. Zhang X, Guan XJ, Li JQ, Zhang LH, Yang JH. [Clinical analysis of cervical intraepithelial lesion in postmenopausal women]. Zhonghua Fu Chan Ke Za Zhi. 2018 Oct 25;53(10):705-710. Chinese. doi: 10.3760/cma.j.issn.0529-567x.2018.10.010. PMID: 30369128.
- 5. Wang L, Liu X, Zhang J, Huang Y, Liu Y, Jia L, Zhang Y, Jia L. Evaluation of the efficacy and safety of 5-aminolevulinic acid-mediated photodynamic therapy in women with high-risk HPV persistent infection after cervical conization. Photodiagnosis Photodyn Ther. 2022 Dec;40:103144. doi: 10.1016/j.pdpdt.2022.103144. Epub 2022 Oct 6. PMID: 36210038.
- 6. Chang Y, Duan Y. [Analysis of factors associated with recurrence of cervical intraepithelial neoplasia after loop electrosurgical excision procedure]. Zhonghua Yi Xue Za Zhi. 2014 Dec 23;94(47):3751-4. Chinese. PMID: 25623100.
- 7. Zhang L, Yang B, Zhang A, Zhou A, Yuan J, Wang Y, Sun L, Cao H, Wang J, Zheng W. Association between human papillomavirus type 16 E6 and E7 variants with subsequent persistent infection and recurrence of cervical high-grade squamous intraepithelial lesion after conization. J Med Virol. 2016 Nov;88(11):1982-8. doi: 10.1002/jmv.24541. Epub 2016 Jun 2. PMID: 27038009.

- 8. Kreimer AR, Guido RS, Solomon D, Schiffman M, Wacholder S, Jeronimo J, Wheeler CM, Castle PE. Human papillomavirus testing following loop electrosurgical excision procedure identifies women at risk for posttreatment cervical intraepithelial neoplasia grade 2 or 3 disease. Cancer Epidemiol Biomarkers Prev. 2006 May;15(5):908-14. doi: 10.1158/1055-9965.EPI-05-0845. PMID: 16702369.
- 9. Aarnio R, Wikström I, Gustavsson I, Gyllensten U, Olovsson M. Diagnostic excision of the cervix in women over 40 years with human papilloma virus persistency and normal cytology. Eur J Obstet Gynecol Reprod Biol X. 2019 May 8;3:100042. doi: 10.1016/j.eurox.2019.100042. PMID: 31404426; PMCID: PMC6687369.
- 10. Alonso I, Torné A, Puig-Tintoré LM, Esteve R, Quinto L, Garcia S, Campo E, Pahisa J, Ordi J. High-risk cervical epithelial neoplasia grade 1 treated by loop electrosurgical excision: follow-up and value of HPV testing. Am J Obstet Gynecol. 2007 Oct;197(4):359.e1-6. doi: 10.1016/j.ajog.2007.01.023. Epub 2007 Aug 21. PMID: 17714678.
- 11. Kim SI, Kim SJ, Suh DH, Kim K, No JH, Kim YB. Pathologic discrepancies between colposcopy-directed biopsy and loop electrosurgical excision procedure of the uterine cervix in women with cytologic high-grade squamous intraepithelial lesions. J Gynecol Oncol. 2020 Mar;31(2):e13. doi: 10.3802/jgo.2020.31.e13. Epub 2019 Aug 22. PMID: 31912671; PMCID: PMC7044015.
- 12. Jung Y, Lee AR, Lee SJ, Lee YS, Park DC, Park EK. Clinical factors that affect diagnostic discrepancy between colposcopically directed biopsies and loop electrosurgical excision procedure conization of the uterine cervix. Obstet Gynecol Sci. 2018 Jul;61(4):477-488. doi: 10.5468/ogs.2018.61.4.477. Epub 2018 Jun 28. PMID: 30018902; PMCID: PMC6046358.
- 13. Papalia N, Rohla A, Tang S, Nation J, Nelson G. Defining the short-term disease recurrence after loop electrosurgical excision procedure (LEEP). BMC Womens Health. 2020 Feb 26;20(1):34. doi: 10.1186/s12905-020-00901-1. PMID: 32102650; PMCID: PMC7045470.
- 14. Li F, Chen A, Shan Y, Yao Y, Lu P, Li N, Ding Z. Factors associated with human papillomavirus persistence after loop electrosurgical excision procedure in patients with cervical squamous intraepithelial lesion. J Obstet Gynaecol Res. 2024 Apr;50(4):639-646. doi: 10.1111/jog.15877. Epub 2024 Jan 7. PMID: 38185922.
- 15. Jing L, Dan W, Zhunan L, Ying X, Yi C. Residual lesions in uterine specimens after loop electrosurgical excision procedure in patients with CIN. Arch Gynecol Obstet. 2018 Oct;298(4):805-812. doi: 10.1007/s00404-018-4881-7. Epub 2018 Aug 30. PMID: 30167855.
- Wu J, Jia Y, Luo M, Duan Z. Analysis of Residual/Recurrent Disease and Its Risk Factors after Loop Electrosurgical Excision Procedure for High-Grade Cervical Intraepithelial Neoplasia. Gynecol Obstet Invest. 2016;81(4):296-301. doi: 10.1159/000437423. Epub 2015 Sep 3. PMID: 26337009.
- 17. Zhao X, Zhang R, Song S, Wang Y, Mu X. Analysis of the clinical characteristics and surgical methods of high-grade squamous intraepithelial lesions of the cervix in postmenopausal women: A retrospective case study. Medicine (Baltimore). 2024 Jun 21;103(25):e38657. doi: 10.1097/MD.0000000000038657. PMID: 38905358; PMCID: PMC11191910.
- 18. Shiro, R., Kotani, Y., Ohta, M., Sato, H., Kashima, Y., Murakami, K., Kawasaki, K., Nakai, H., & Matsumura, N. (2023). Diagnostic utility of hysteroscopic biopsy in cases of suspected lobular endocervical glandular hyperplasia and comparison with cervical conization. *Healthcare*, 11(11), 1619. https://doi.org/10.3390/healthcare11111619
- 19. American College of Obstetricians and Gynecologists. (2020). The use of hysteroscopy for the diagnosis and treatment of intrauterine pathology. *ACOG Committee Opinion No.* 800. https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2020/03/the-use-of-hysteroscopy-for-the-diagnosis-and-treatment-of-intrauterine-pathology
- 20. Coskun, E. S., Yeniocak, A. S., Bacak, H. B., & Salman, S. (2024). Optimizing analgesia for endometrial biopsy: A prospective, randomized study comparing intrauterine lidocaine, oral dexketoprofen, cervical lidocaine spray, and paracervical block. *Journal of Obstetrics and Gynaecology Research*, 51(1), e16148. https://doi.org/10.1111/jog.16148
- 21. Bradley, L. D., & Gueye, N. A. (2020). The use of hysteroscopy for the diagnosis and treatment of intrauterine pathology. *Obstetrics & Gynecology*, *135*(3), e138–e148. https://doi.org/10.1097/AOG.00000000000003715
- 22. Apgar, B. S., Kaufman, A. J., Bettcher, C. M., & Weismiller, D. G. (2013). Gynecologic procedures: Colposcopy, treatment of cervical intraepithelial neoplasia, and endometrial assessment. *American Family Physician*, 87(12), 836–843. https://www.aafp.org/pubs/afp/issues/2013/0615/p836.html

- 23. Bettocchi, S., & Nappi, L. (2022). An overview of office hysteroscopy. *Current Obstetrics and Gynecology Reports*, 11, 1–8. https://doi.org/10.1007/s13669-024-00377-y
- Nakamura, Y., Matsumoto, K., Satoh, T., Nishide, K., Nozue, A., Shimabukuro, K., Endo, S., Nagai, K., Oki, A., Minaguchi, T., Morishita, Y., Noguchi, M., & Yoshikawa, H. (2015). Optimizing biopsy procedures during colposcopy for women with abnormal cervical cancer screening results: A multicenter prospective study. *International Journal of Clinical Oncology*, 20(3), 579–585. https://doi.org/10.1007/s10147-014-0739-6
- 25. Orlando, M. S., & Bradley, L. D. (2022). Implementation of office hysteroscopy for the evaluation and treatment of intrauterine pathology. *Obstetrics & Gynecology*, *140*(3), 499–513. https://doi.org/10.1097/AOG.00000000000004898
- 26. Hoffman, B. L., Schorge, J. O., Bradshaw, K. D., Halvorson, L. M., Schaffer, J. I., & Corton, M. M. (2020). *Williams gynecology* (4th ed.). McGraw-Hill Education.
- 27. Attilio Di Spiezio Sardo, Ivan Mazzon, Silvia Bramante, Stefano Bettocchi, Giuseppe Bifulco, Maurizio Guida, Carmine Nappi, Hysteroscopic myomectomy: a comprehensive review of surgical techniques, *Human Reproduction Update*, Volume 14, Issue 2, March/April 2008, Pages 101–119, https://doi.org/10.1093/humupd/dmm041
- 28. Salazar CA, Isaacson KB. Office Operative Hysteroscopy: An Update. J Minim Invasive Gynecol. 2018 Feb;25(2):199-208. doi: 10.1016/j.jmig.2017.08.009. Epub 2017 Aug 10. PMID: 28803811.
- Andrea Tinelli, Bradley S. Hurst, Liselotte Mettler, Daniel A. Tsin, Marcello Pellegrino, Giuseppe Nicolardi, Domenico Dell'Edera, Antonio Malvasi, Ultrasound evaluation of uterine healing after laparoscopic intracapsular myomectomy: an observational study, *Human Reproduction*, Volume 27, Issue 9, September 2012, Pages 2664–2670, https://doi.org/10.1093/humrep/des212
- 30. Cicinelli E, Matteo M, Tinelli R, Pinto V, Marinaccio M, Indraccolo U, De Ziegler D, Resta L. Chronic endometritis due to common bacteria is prevalent in women with recurrent miscarriage as confirmed by improved pregnancy outcome after antibiotic treatment. Reprod Sci. 2014 May;21(5):640-7. doi: 10.1177/1933719113508817. Epub 2013 Oct 31. PMID: 24177713; PMCID: PMC3984485.
- 31. Clark, T. J., & Gupta, J. K. (2002). Handbook of outpatient hysteroscopy: A complete guide to diagnosis and therapy. *Arnold Publishers*.
- 32. Wright, K.N., Hamilton, K. & Kosturakis, A. An Overview of Office Hysteroscopy. *Curr Obstet Gynecol Rep* **13**, 88–96 (2024). https://doi.org/10.1007/s13669-024-00377-y
- 33. Jones HW 3rd. Treatment of cervical intraepithelial neoplasia. Clin Obstet Gynecol. 1990 Dec;33(4):826-36. doi: 10.1097/00003081-199012000-00018. PMID: 2289349.