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Abstract: Carbon emissions are a critical global issue requiring detailed spatial analyses to support regional carbon 

peak and neutrality strategies. This study investigates the spatiotemporal evolution and spatial differentiation of 

county-level land-use carbon emissions (CELU) in the Changchun-Jilin-Tumen (CJT) region from 2012 to 2021 

by integrating land use data, nighttime light imagery, and socio-economic statistics with the Optimal Parameter 

Geodetector (OPGD) model. The analysis identifies key drivers of spatial emission variability, including 

construction land proportion (q-value: 0.8882), land area per capita (q-value: 0.7609), and urbanization rate (q-

value: 0.5875), underscoring the significant role of land-use patterns and urbanization. Results show a 21.2% 

increase in CELU, from 67,594.46×104 t in 2012 to 81,942.35×104 t in 2021, with emissions concentrated in 

industrially active and urbanized western and southern counties, while forest-rich central and eastern counties 

exhibit lower emissions. Using the Grey Model (GM (1,1)), the study forecasts that CELU will rise from 

78,484.364×104 t in 2022 to 88,985.198×104 t by 2030, reflecting a 14% increase over the forecast period. This 

trajectory highlights the misalignment between current trends and the region's goals of creating a "low-carbon 

industrial zone" and "livable cities," emphasizing the need for transitioning to renewable energy, optimizing 

industrial structures, and implementing sustainable land-use practices such as brownfield redevelopment and 

ecological land protection. By combining advanced remote sensing with nonlinear spatial analysis, this study offers 

a replicable high-resolution framework for understanding carbon emission drivers and spatial patterns, providing 

actionable insights for refining carbon reduction strategies and achieving sustainable development goals at both 

national and global scales. 

Keywords: Land-use carbon emissions; Nighttime light data；Spatial emission drivers；OPGD model；Changchun-

Jilin-Tumen region 

1. Introduction 

Global climate change has underscored the urgent need for effective carbon reduction strategies, as increasing atmospheric 

carbon dioxide levels contribute to severe environmental and economic consequences, including sea-level rise, extreme weather 

events, and disruptions to ecosystems and human livelihoods(Cui et al., 2020; Yan et al., 2022). Land-use changes, which are 

second only to fossil fuel combustion in their contribution to carbon emissions, significantly impact the global carbon cycle and 

regional ecosystems(Clark et al., 2018). As the world’s largest carbon emitter, China has committed to peaking its carbon 

emissions by 2030 and achieving carbon neutrality by 2060, highlighting the importance of regional and localized solutions that 

align economic development with sustainability goals(Yang & Li, 2023). 

The Changchun-Jilin-Tumen (CJT) region in northeastern China presents a critical case for studying land-use carbon 

emissions due to its unique blend of socioeconomic and ecological characteristics. Beyond its strategic economic role as part of 

China's “Northeast Revitalization” initiative, the CJT region exemplifies diverse land-use patterns and development dynamics, 
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ranging from heavily industrialized plains in the west to forest-rich mountainous areas in the east. This regional diversity provides 

a valuable opportunity to analyze spatial variability in carbon emissions and evaluate the effectiveness of mitigation strategies 

across different land-use and urbanization contexts. Furthermore, the region's integration into national policies and its position 

as a hub for industrial and economic activities make it representative of broader trends in rapidly urbanizing and industrializing 

areas across the globe. 

While significant research has explored carbon emissions at national, provincial, and municipal scales, localized analyses 

that capture fine-scale spatial variability and county-level dynamics remain limited. Studies such as Liu et al. (2019) have 

employed meta-frontier approaches to examine provincial-level drivers of carbon emissions but fail to address localized spatial 

heterogeneity. At the municipal level, Chen et al. (2021) leveraged nighttime light (NTL) data to estimate city-level emissions, 

demonstrating the utility of remote sensing but relying on econometric models that inadequately capture nonlinear spatial 

interactions. Similarly, Long et al. (2022) analyzed county-level variations in Wu’an City, providing valuable insights but 

utilizing traditional spatial econometric approaches that often assume fixed spatial relationships and linearity. 

Recent advancements in remote sensing technologies, particularly the use of NTL data, offer new possibilities for high-

resolution spatial analyses. NTL data serve as reliable proxies for human activities such as energy consumption and urbanization, 

providing finer spatial and temporal resolutions than traditional statistical approaches(J. Chen et al., 2021). However, the 

integration of NTL data with advanced spatial models remains limited, reducing the capacity of existing studies to uncover the 

drivers of spatial emission variability. 

This study addresses these gaps by integrating high-resolution NTL data with the Optimal Parameter Geodetector (OPGD) 

model to analyze spatial drivers of land-use carbon emissions in the CJT region from 2012 to 2021. The OPGD model’s ability 

to uncover nonlinear relationships and spatial heterogeneity is further complemented by the Grey Model (GM (1,1)), which 

forecasts carbon emission trends for 2022–2030. This research not only bridges the gap in county-level emission studies but also 

provides actionable insights for regional carbon management strategies. Moreover, by situating the findings within the context 

of global emission reduction efforts, the study offers a replicable framework for other regions facing similar sustainability 

challenges, contributing to both national and international climate goals. 

2. Materials and methods 

2.1. Study Area 

The Changchun-Jilin-Tumen Development and Opening-up Pilot Zone (hereafter the "Changchun-Jilin-Tumen Region") is 

located in Northeast China, strategically positioned at the center of Northeast Asia along the New Eurasian Land Bridge. This 

73,000 km² region spans from 124°30′47″E–131°19′29″E and 42°00′02″N–44°56′46″N (Fig. 1) and includes parts of Changchun 

City (central urban areas, Dehui, and Nongan), Jilin City (Jiaohe and Yongji), and the entirety of Yanbian Korean Autonomous 

Prefecture, comprising 23 counties. 

The region features a monsoon-influenced temperate climate, with hot, humid summers and cold, dry winters, and a varied 

topography ranging from mountainous terrain in the east to flat alluvial plains in the west and southeast(Wang et al., 2024). This 

diversity supports forests and arable land in the west, providing significant natural carbon sinks. However, rapid industrialization 

and urbanization have elevated energy consumption and carbon emissions, particularly in western counties. 

By 2021, the region's GDP was 945.427 billion yuan, with contributions from primary (8.4%), secondary (40.4%), and 

tertiary (51.2%) sectors, reflecting its status as an economic hub. Its urbanization rate reached 60.23%, underlining the pressures 

of rapid development (Jilin Statistical Yearbook, 2022). The region's designation in 2009 as a national strategic priority under 

the "Planning Outline for the Development and Cooperation of the Tumen River Area" has accelerated industrial growth but also 

presents significant challenges in achieving carbon neutrality. 
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Fig. 1. Geographic Location of the Study Area. 

2.2. Data Sources 

This study integrated diverse datasets to analyze county-level land-use carbon emissions (CELU) in the Changchun-Jilin-

Tumen region. The primary data sources are: 

1. Land Use Data: The China Land Cover Dataset (CLCD) was processed on Google Earth Engine (GEE) using Landsat 

imagery and a random forest classifier. It categorizes land into six types: cultivated land, built-up land, forest, water bodies, 

grassland, and unused land, with a spatial resolution of 30 meters(Yang & Huang, 2021). 

2. Nighttime Light Data: NPP-VIIRS-like NTL data (2012–2021), sourced from the National Earth System Science Data 

Center, provides high-resolution proxies for human activity and energy consumption(Z. Chen et al., 2021). 

3. Energy and Socio-Economic Data: Data on energy consumption, GDP, population, and industrial outputs were obtained 

from provincial and municipal yearbooks. 

4. Administrative Boundaries: Vector boundary data for 2023 was acquired from the Resources and Environmental 

Science Data Center. 

A summary of the data types and their respective sources is provided in Table 1. 

Table 1 

Data Categories and Sources Used in the Study. 

Data Type Data Year Data Source 

NPP-VIIRS-like NTL data 2012-2021 
National Earth System Science Data Center 

(http://www.geodata.cn) 

CLCD Data 2012-2021 
Wuhan University CLCD-LULC Product 

(https://zenodo.org/records) 

Energy consumption data 2012-2021 http://www.stast.gov.cn 

http://www.geodata.cn/
http://www.stast.gov.cn/
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Population  

GDP 

Fixed Assets 

Primary industry output 

Secondary industry output  

2012-2021 

http://tjj.jl.gov.cn; 

http://www.jlcity.gov.cn; 

http://www.changchun.gov.cn/sycx; 

http://www.yanbian.gov.cn. 

Administrative Boundaries 2023 
Resources and Environmental Science Data Center 

(https://www.reesdc.cn) 

2.3. Preprocessing of NPP-VIIRS-like NTL Data 

The NTL dataset, formatted using the GCS_WGS_1984 coordinate system, spans 2012–2021 with a 500-meter resolution. 

Thresholding techniques removed outliers, ensuring temporal consistency and spatial accuracy. Masked extraction isolated data 

specific to the study area, aligning the analysis with China’s administrative boundaries. 

This preprocessing represents a methodological innovation, using NTL data as a robust proxy for energy consumption and 

human activity. By addressing spatial data gaps, it enables fine-scale carbon emission analysis in regions where detailed statistics 

are lacking. 

2.4. Method 

A comprehensive framework (Fig. 2) was developed to estimate county-level carbon emissions from land use (CELU) for 

the period 2012 to 2021. This framework integrates advanced data processing and spatial analysis techniques, ensuring rigorous 

assessment of both direct and indirect emissions. 

 

Fig. 2. Research Framework for Carbon Emission Analysis. 

 

http://tjj.jl.gov.cn/
http://www.jlcity.gov.cn/
http://www.changchun.gov.cn/sycx
http://www.yanbian.gov.cn/
file:///C:/Users/Lenovo/Documents/WeChat%20Files/wxid_ftdn1nct45k022/FileStorage/File/2024-10/Resources%20and%20Environmental%20Science%20Data%20Center%20(https:/www.reesdc.cn)
file:///C:/Users/Lenovo/Documents/WeChat%20Files/wxid_ftdn1nct45k022/FileStorage/File/2024-10/Resources%20and%20Environmental%20Science%20Data%20Center%20(https:/www.reesdc.cn)


Fuel Cells Bulletin 
ISSN: 1464-2859 

 

18 Vol: 2025|Iss: 1|2025|© 2025 Fuel Cells Bulletin 

2.4.1. Carbon Emission Estimation 

Carbon emissions were categorized into direct and indirect emissions, calculated using standardized approaches to ensure 

methodological consistency and comparability. 

Direct Emissions  

Direct emissions were derived from five land-use types: cultivated land, forest, grassland, water bodies, and unused land. 

The emissions were estimated using the equation: 

 𝐸1 = ∑ 𝐶𝑖
𝑛
𝑖=1 = ∑ (𝑆𝑖 × 𝜕𝑖

5
𝑖=1 )            (1) 

Where 𝐸𝑐 is the total direct carbon emissions, 𝐶𝑖 represents the emissions from each land-use type, 𝑆𝑖 is the area of each 

land type, 𝜕𝑖 is the carbon emission (or absorption) coefficient (+ for carbon sources, − for carbon sinks), and n denotes the five 

land-use types (cultivated land, forest, grassland, water bodies, unused land).  

The carbon emission coefficients (δi) applied in the calculations are shown in Table 2. 

Table 2 

Carbon Emission Coefficients for Land Use Types. 

Land Use Type Carbon Emission Coefficient (δi) Unit Reference 

Cropland 0.422 t/hm2 Li et al., 2018 

Forest -0.585 t/hm2 Lai, 2010 

Grassland -0.021 t/hm2 Yang et al., 2022 

Water -0.253 t/hm2 Shi et al., 2019 

Unused Land -0.005 t/hm2 Lai,2010 

Indirect Emissions 

Indirect emissions, primarily originating from built-up land, were calculated based on energy consumption data from 2012 

to 2021, following methodologies from Niu et al. (2021) and Cai et al. (2023). These emissions include contributions from both 

energy consumption and electricity use, computed using the following equations: 

1.Emissions from Energy Consumption (𝐸1): 

 𝐸1 = ∑ (𝑒𝑖 × 𝐴𝑖
8
𝑖=1 )            (2) 

Where 𝐸1 is the carbon emissions from energy consumption, 𝑒𝑖 represents the quantity of energy consumed, and 𝐴𝑖 is 

the emission coefficient for each energy type.  

2.Emissions from Electricity Consumption (𝑬𝟐): 

 𝐸2 = ∑ (𝑒𝑖 × 𝐵𝑖 × 10)𝑛
𝑖=1       (3) 

Where 𝐸2 is the emissions from electricity consumption, 𝑒𝑖 denotes the energy consumed (kWh), and 𝐵𝑖  is the emission 

coefficient for electricity. 

The carbon emission coefficients (𝐴𝑖) used for energy types are presented in Table 3. 
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Table 3 

CO₂ Emission Coefficients for Energy Types(Wang et al., 2020). 

Energy Type Carbon Emission Coefficient Unit 

Crude oil 3.0202 Kg CO2/kg 

Fuel oil 3.1705 Kg CO2/kg 

Kerosene 3.0719 Kg CO2/kg 

Natural oil 2.1622 Kg CO2/m
3 

Coal 1.9003 Kg CO2/kg 

Gasoline 2.9251 Kg CO2/kg 

Diesel 3.0959 Kg CO2/kg 

Coke 2.8604 Kg CO2/kg 

Electric power 1.0960 Kg Kw-1h-1 

Spatial Allocation of Indirect Emissions 

Indirect emissions were spatially distributed using nighttime light intensity data. This approach leveraged the strong linear 

correlation (r=0.9647, p<0.01) between total digital number (TDN) and carbon emissions in Jilin Province (Table 4). The formula 

used for spatial allocation is: 

   𝐸𝑗 =
𝐷𝑁

𝑇𝐷𝑁
× (𝐸1 + 𝐸2)                                (4) 

Where 𝐸𝑗 represents the estimated carbon emissions, 𝐷𝑁 is the nighttime light intensity, and 𝑇𝐷𝑁 is the total digital 

number of the nighttime light data. 

Table 4 

Indirect Carbon Emissions and TDN Values in Jilin Province (2012–2021). 

Year Indirect Carbon Emissions(104t) TDN Value  

2012 98194.6608 184989.6125 

2013 100008.3044 203832.7775 

2014 100167.2943 186502.4340 

2015 96673.1046 199240.8195 

2016 97843.5369 216193.2913 

2017 101713.8163 262317.5770 

2018 105589.8589 283692.9399 

2019 109592.3773 311268.8500 

2020 111692.5068 330948.0100 
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2021 115877.2953 387662.9850 

Total carbon emissions (𝐸𝑡𝑜𝑡𝑎𝑙) were calculated as: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑐 + 𝐸𝑗        (5) 

Where 𝐸𝑡𝑜𝑡𝑎𝑙 represents the sum of direct and spatially localized indirect emissions. 

2.4.2. Spatial Analysis 

Exploratory Spatial Data Analysis (ESDA) identified spatial autocorrelation using Moran’s I and LISA statistics. Standard 

Deviation Ellipse (SDE) analysis tracked the mean center and spatial distribution trends. 

2.4.3 Geographical Factor Detection 

The Optimal Parameters Geographical Detector (OPGD) model was applied to quantify the explanatory power of factors 

such as land use and urbanization. Parameter optimization was conducted using R's GD package, uncovering nonlinear 

interactions among variables. 

2.4.4 Grey Prediction Model 

To assess whether a dataset is suitable for grey prediction modeling, a level ratio test is performed on the original sequence 

to verify that the level ratios fall within a specified range. The original data sequence is represented as 𝑋(0) =

[𝑥(0)(1), 𝑥(0)(2), . . . , 𝑥(0)(𝑛)]，and the level ratios 𝜆(𝑘) are calculated using the following formula: 

𝜆(𝑘) =
𝑥(0)(𝑘+1)

𝑥(0)(𝑘)
                (6) 

If all calculated level ratios 𝜆(𝑘) lie within the interval (e-2/(n+1), e-2/(n+2)), where n is the sample size, the sequence is deemed 

suitable for grey prediction. 

Based on the original sequence𝑋(0), an accumulated sequence is generated by applying a cumulative sum, defined as: 

𝑋(1)(𝑘) = ∑ 𝑥(0)(𝑖)𝑘
𝑖=1             (7) 

This produces a new sequence 𝑋(1) = [𝑥(1)(1), 𝑥(1)(2), . . . , 𝑥(1)(𝑛)], where n is the number of data samples. The mean 

sequence is then calculated as: 

𝑧(1)(𝑘) =
1

2
[𝑥(1)(𝑘) + 𝑥(1)(𝑘 − 1)],   𝑘 = 2,3, . . . , 𝑛.      (8) 

The grey differential equation is constructed as: 

𝑥(0)(𝑘) + 𝑎𝑧(1)(𝑘) = 𝑏                      (9) 

From this, the development coefficient a and the grey effect coefficient b are determined. 

The corresponding GM (1,1) whitened differential equation is given by: 

𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑧(1)(𝑡) = 𝑏                   (10) 

The discrete solution of the GM (1,1) model is expressed as: 

𝑋(1)̂ (𝑘) = [𝑥(0)(1) −
𝑏

𝑎
] 𝑒−𝛼(𝑘−1) +

𝑏

𝑎
                 (11) 

The original sequence model is derived as: 
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𝑋(0)̂ (𝑘) = [𝑥(0)(1) −
𝑏

𝑎
] 𝑒−𝛼(𝑘−1)(1 − 𝑒𝑎)             (12) 

The model's accuracy is verified using the relative residual 𝜀(𝑘), calculated as: 

𝜀(𝑘) = |
𝑥(0)(𝑘)−𝑥(0)̂(𝑘)

𝑥(0)(𝑘)
|       (13) 

If 𝜀(𝑘)<0.1, the prediction accuracy is classified as high. If 𝜀(𝑘)<0.2, the prediction accuracy is moderate. 

A posterior error ratio test is performed using the posterior error ratio C, calculated as: 

𝐶 =
𝑆2

𝑆1
       (14) 

where:  

𝑆1 = √
1

𝑛
∑ [𝑥(0)(𝑘) − 𝑥̅]2𝑛

𝑘−1  ，𝑆2 = √
1

𝑛
∑ [𝜀(𝑘) − 𝜀]̅2𝑛

𝑘=1     (15) 

If C<0.35, the model's predictive performance is deemed excellent; if 0.35≤C<0.5, the performance is considered good. 

These criteria provide a robust framework for assessing the suitability and reliability of the GM (1,1) model for predictive 

analysis. 

3. Result 

3.1. Temporal and Spatial Evolution of Land Use Carbon Emissions 

3.1.1 Temporal Trends in Land Use Carbon Emissions 

Between 2012 and 2021, the Changchun-Jilin-Tumen (CJT) region exhibited a consistent increase in land use carbon 

emissions and carbon emission density (Fig. 3). Total net carbon emissions rose from 67,594.46×10⁴ t in 2012 to 81,942.35×10⁴ 

t in 2021, reflecting a growth rate of over 21%. This trend is closely associated with urbanization and industrialization, which 

increased energy demand across sectors such as construction, transportation, and manufacturing. Simultaneously, the carbon 

sequestration capacity of forests and grasslands proved insufficient to counterbalance emissions stemming from the expansion 

of built-up land. In rural areas, improved living standards, supported by initiatives such as targeted poverty alleviation and rural 

revitalization, further contributed to higher emissions. 

At the county level, Nanguan District experienced the largest increase in carbon emissions, from 10,314.71 × 10⁴ t in 2012 

to 16,518.18 × 10⁴ t in 2021. Conversely, Wangqing County recorded the smallest increase, with emissions rising only marginally 

from 154.18 × 10⁴ t to 210.71 × 10⁴ t over the same period. Notably, some areas reported decreases in emissions. For instance, 

carbon emissions in Chuanying District declined from 4,003.71 × 10⁴ t in 2012 to 2,464.79 × 10⁴ t in 2021. Similarly, emissions 

in Fucheng District decreased from 3,355.71 × 10⁴ t to 2,391.91 × 10⁴ t, while Longtan District experienced a reduction from 

4,072.67 × 10⁴ t to 2,108.43 × 10⁴ t. These declines were primarily driven by industrial restructuring, which replaced traditional 

high-carbon industries with lower-carbon sectors such as services and technology. Adoption of cleaner energy technologies, 

increased reliance on renewable energy, and the closure of outdated industrial facilities further supported emission reductions. 
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Fig. 3. Carbon Emissions and Carbon Emission Density in the Changchun-Jilin-Tumen Region (2012–2021). 

3.1.2 Spatial Variation of Land Use Carbon Emissions 

This study employed the Natural Breaks method to classify land use carbon emissions in the Changchun-Jilin-Tumen (CJT) 

region into four categories: low-carbon zones, lower-middle carbon zones, middle carbon zones, and high-carbon zones. Spatial 

visualization using ArcGIS and Origin revealed distinct spatial patterns and temporal trends in carbon emissions（Fig. 4）. 

Carbon emissions consistently displayed a pattern of higher emissions in the southwest, particularly in urbanized and 

industrialized areas, and lower emissions in the central and eastern regions, characterized by lower population density and greater 

vegetation coverage. In 2012, the region comprised 8 low-carbon zones, 5 lower-middle carbon zones, 5 middle carbon zones, 

and 5 high-carbon zones. High-emission areas, such as Kuancheng, Lvyuan, Nanguan, Erdao, and Chaoyang districts, were 

linked to intensive industrial activities, high population density, and advanced infrastructure, which contributed to elevated 

energy consumption and emissions. In contrast, districts like Helong City, Wangqing County, and Tumen City experienced 

significantly lower emissions due to a focus on low-carbon industries such as cultural tourism, food production, and healthcare, 

alongside high forest and grassland coverage that supported carbon sequestration. 

From 2015 to 2018, carbon emissions rose across most districts. The number of low-carbon zones decreased, while middle-

carbon zones increased to 8, reflecting a shift in spatial patterns. Middle-carbon zones such as Jilin City, Yanji City, Hunchun 

City, and Shuangyang District emerged as key contributors, driven by industrial and power generation activities. These areas, 

often located near high-carbon zones, demonstrated the influence of urbanization and economic activity on regional emissions. 

High-carbon zones, however, remained stable during this period. 

By 2021, the distribution of emission zones became more uniform, with 5 zones in each category. While overall emissions 

continued to rise, temporary reductions in some districts were observed, likely due to the economic slowdown and restricted 

industrial activities caused by the global health crisis. These disruptions highlighted the sensitivity of emission trends to external 

factors, such as global economic conditions. 

The spatial patterns and trends in carbon emissions underscore the influence of land use and human activity on regional 

carbon dynamics. High-emission areas were consistently associated with urbanization and industrialization, while lower-

emission areas benefitted from natural carbon sequestration provided by forest and grassland cover. These findings reveal critical 

spatial disparities in carbon emissions, which provide a foundation for understanding the environmental impacts of land use and 

economic activities in the CJT region. 
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Fig. 4. Spatial and Temporal Characteristics of Carbon Emissions from Land Use. 

(a) Net carbon emissions across years.  

(b) Heatmap analysis of carbon emissions (2012–2021). 

(c) Evolution of spatial patterns of carbon emissions (2012–2021). 

Note: Abbreviations for regions: 'AT' - Antu; 'CY' - Changyi; 'CYi' - Chuanying; 'DH' - Dehui; 'Dhu' - Dunhua; 'ED' - Erdao; 

'FM' - Fengman; 'HL' - Helong; 'HC' - Hunchun; 'JH' - Jiaohe; 'JT' - Jiutai; 'KC' - Kuancheng; 'LJ' - Longjing; 'LT' - Longtan; 

'LY' - Lvyuan; 'NG' - Nanguan; 'NA' - Nongan; 'SY' - Shuangyang; 'TM' - Tumen; 'WQ' - Wangqing; 'YJ' - Yanji; 'YJi' - Yongji; 

'CYa' - Chaoyang. 

3.2. Spatial Agglomeration Characteristics 

3.2.1 Global Moran's I Index 

Using the adjacency spatial weight matrix, the Global Moran's I values for county-level land use carbon emissions were 

calculated with GeoDa software. The results, presented in Fig. 5, indicate that the Moran's I values for 2012, 2015, 2018, and 

2021 were 0.486, 0.468, 0.488, and 0.511, respectively. All values were positive and statistically significant at the 99% 

confidence level. 

These results demonstrate a trend characterized by an initial decrease in Moran's I, followed by an increase, reflecting 

changes in the spatial clustering of counties with similar carbon emission levels in the Changchun-Jilin-Tumen region. Despite 

fluctuations, the overall pattern indicates that the region remains spatially clustered throughout the study period. 
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Fig.5 Global Moran's I for Carbon Emissions in the Changchun-Jilin-Tumen Region（2012-2021）. 

3.2.2 Local Spatial Autocorrelation Patterns (LISA Analysis) 

From 2012 to 2021, the spatial clustering patterns in the Changchun-Jilin-Tumen region remained relatively stable, as 

illustrated in Fig. 6. High-high (H-H) and low-low (L-L) clustering were the dominant patterns, reflecting the spatial distribution 

of carbon emissions across districts. Specific high-low (H-L) and low-high (L-H) clustering areas were also identified during the 

study period. 

High-High (H-H) Clustering: 

H-H clusters were primarily located in districts with moderate to high carbon emissions, such as Nanguan, Chaoyang, Erdao, 

and Kuancheng. These districts, situated in the core urban areas of Changchun, are characterized by advanced urbanization, 

significant population density, and integrated industrial structures. Dominant land-use types in these regions, including built-up 

and cultivated land, contributed substantially to carbon emissions, forming concentrated high-emission clusters. 

Low-Low (L-L) Clustering: 

L-L clusters were mainly observed in districts with low to moderately low carbon emissions, including Hunchun, Yanji, and 

Longjing. These areas are predominantly covered by forests and grasslands, characterized by low population densities and 

economies reliant on tourism, light industry, and services. The presence of substantial natural carbon sinks and minimal industrial 

activities significantly reduced carbon emissions in these districts. 

High-Low (H-L) Clustering: 

H-L clustering was observed in Yanji in 2015, where high-emission districts were surrounded by low-emission regions. This 

pattern reflects a reliance on coal-fired boilers during the transition to cleaner energy sources such as electricity and natural gas. 

The incomplete shift to clean energy during this period sustained coal boilers as a significant source of carbon emissions. 

Low-High (L-H) Clustering: 

L-H clustering occurred in Shuangyang in 2021, where low-emission areas were surrounded by high-emission districts. 

Shuangyang's primary land use is agricultural, which generates relatively low emissions compared to urbanized and 

industrialized regions. However, its proximity to high-emission zones resulted in a localized low-emission cluster within a 

broader high-emission region. 
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Fig. 6. LISA Clustering Map of Land Use Carbon Emissions in the Study Area (2012-2021). 

3.3. Centroid Migration Characteristics 

The standard deviation ellipse method was utilized to analyze the spatial distribution and evolutionary trends of land-use 

carbon emissions. This method provides insights into the spatial extension, integration, and other regional distribution 

characteristics. Table 5 and Fig. 7 highlight key patterns in carbon emissions. 

The standard deviation ellipse of net land-use carbon emissions in the Changchun-Jilin-Tumen region exhibits an east-west 

orientation, with the centroid located between 125°55'41"E–126°08'24"E and 43°46'05"N–43°48'22"N, southwest of the region's 

geometric center. This positioning reflects higher carbon emissions in the southwestern areas (Fig. 7). 

3.3.1 Principal Axis and Dispersion Trends 

From 2012 to 2015, the major axis length increased from 141.272 km to 163.159 km, and the minor axis length grew from 

34.916 km to 36.8 km. Between 2015 and 2018, the major axis expanded further to 165.928 km, and the minor axis to 38.446 

km, indicating a continued east-west dispersion. This pattern aligns with regional integration policies aimed at fostering 

development across the area. From 2018 to 2021, the major axis contracted to 141.302 km, and the minor axis decreased to 

35.264 km, signaling a concentration of emissions along the east-west axis. 

The azimuth angle fluctuated slightly, increasing from 90.692° in 2012 to 91.710° in 2015, peaking at 91.893° in 2018, and 

then declining to 91.126° in 2021. These values, consistently within 90°–92°, indicate the overall stability of the spatial 

orientation of carbon emissions during the study period. 

The area of the ellipse expanded from 15,491 km² in 2012 to a peak of 20,034 km² in 2018, followed by a contraction to 

15,649 km² in 2021. This reflects a peak in spatial dispersion in 2018, followed by a period of concentration. 

3.3.2 Centroid Migration Analysis 

The trajectory of centroid migration demonstrates an initial southeastward shift (2012–2015), followed by a northwestward 

shift (2018–2021), with a total migration distance of 30.214 km over the 10-year period. Between 2012 and 2015, the centroid 

moved 0.12° eastward and 0.038° southward, covering 10.521 km. From 2015 to 2018, it shifted 0.029° eastward and 0.0008° 

southward, spanning 2.409 km. The largest migration occurred between 2018 and 2021, with the centroid moving 0.211° 

westward and 0.029° northward over 17.284 km. 
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Despite these shifts, the carbon emission centroid remained within Yongji County, concentrating in the western and 

southwestern parts of the CJT region. These areas, dominated by built-up and cultivated land, are significant emission hotspots 

due to energy-intensive secondary industries, rapid urbanization, and economic growth. Policies favoring resource allocation to 

these areas have further contributed to their high emission levels. 

3.3.3 Implications for Carbon Emission Control 

The findings highlight the need to prioritize emission reduction efforts in the western and southern urban areas of the CJT 

region. Industrial restructuring and enhanced energy efficiency are essential to mitigate emissions in these carbon-intensive zones 

and support sustainable development. 

Table 5 

Characteristics of Carbon Emission Standard Deviation Ellipse in the Changchun-Jilin-Tumen Region. 

Year 
Longitude 

(°E) 

Latitude 

(°N) 

Distance 

(km) 

Major 

axis(km) 

Minor 

axis(km) 

Rotation 

(°) 

Area 

(km2) 

2012 125°59'23" 43°48'22" - 141.2720 34.9160 90.6920 15491 

2015 126°06'36" 43°46'05" 10.5210 163.1590 36.8000 91.7100 18855 

2018 126°08'24" 43°46'08" 2.4090 165.9280 38.4460 91.8930 20034 

2021 125°55'41" 43°47'53" 17.2840 141.3020 35.2640 91.1260 15649 

 

Fig. 7. Standard Deviation Ellipse Parameters and Trajectory of Centroid Migration for Carbon Emissions in the Changchun-

Jilin-Tumen Region (2012–2021). 

3.4. Analysis of Factors Influencing Land Use Carbon Emissions 

The spatial variability of land-use carbon emissions (CELU) at the county level in the Changchun-Jilin-Tumen region is 

significant. To investigate the mechanisms driving this variability, a geographic detector model was applied to analyze 

influencing factors and their interactions. Nine explanatory variables were selected based on prior research and data availability, 

as detailed in Table 6. 
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Table 6 

Indicators of Factors Influencing Land Use Carbon Emissions. 

Element Layer Indicator Layer 

Energy intensity X1：Energy consumption per GDP (t/10,000yuan) 

Economic development  X2：Per capita GDP (yuan) 

Industrial structure 
X3：Proportion of primary industry output 

X4：Proportion of secondary industry output 

Regional investment  X5：Fixed asset Investment (million yuan) 

Land use scale X6：Land area per capita(persons/km2) 

Land-use structure X7：Construction land proportion 

Population size X8：Population size (person) 

Urban development  X9：Urbanization rate 

3.4.1. Detection of influential factors 

The analysis identified significant variations in the explanatory power (q-values) of factors influencing CELU spatial 

differentiation. To address these variations, multiple discretization methods—such as natural breaks, equal intervals, and quantile 

classification—were applied using the "GD" package in R. Optimal parameter combinations were selected based on the highest 

q-values (Fig. 8). 

 

Fig. 8. Parameter Optimization for Explanatory Variables of Land Use Carbon Emissions Using the OPGD Model. 

The optimized results revealed that the most influential factors (q > 0.5) were X7 (Construction land proportion), X3 

(Proportion of primary industry output), X6 (Land area per capita), X9 (Urbanization rate), and X8 (Population size) (Table 7). 

Among these, X7 consistently exhibited the highest explanatory power across all years, underscoring its dominant role in driving 

emissions. The significant contribution of construction activities reflects their energy-intensive nature. Factors such as X3, X6, 

X9, and X8 also demonstrated substantial explanatory power, emphasizing the role of land-use patterns, urbanization, and 

population size in shaping emissions. 

Secondary factors, including X2 (Per capita GDP), X1 (Energy consumption per GDP), and X5 (Fixed asset investment), 
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exhibited moderate explanatory power. X4 (Proportion of secondary industry output) consistently showed the lowest q-values, 

suggesting a limited impact on CELU, potentially due to fluctuations in industrial activity or the effectiveness of policy 

interventions. 

Table 7 

Explanatory Power of Factors Influencing Land Use Carbon Emissions. 

Detection Indicator 

Explanatory Power 

2012  2015  2018  2021  Average 

X1 0.3815 0.3966 0.7206*** 0.2588 0.4394  

X2 0.4619* 0.2401 0.4620 0.8082*** 0.4931  

X3 0.8953*** 0.8727*** 0.8772*** 0.8606*** 0.8765  

X4 0.3859 0.3449 0.1653 0.2394 0.2839  

X5 0.3773 0.4748* 0.3360 0.4589 0.4118  

X6 0.8870*** 0.8099*** 0.7564*** 0.5902** 0.7609  

X7 0.8977*** 0.8735*** 0.8758*** 0.9056*** 0.8882  

X8 0.6171** 0.6295** 0.6774** 0.2677 0.5479  

X9 0.5482* 0.6125*** 0.6677** 0.5215** 0.5875  

Note: Statistical significance is denoted as ***p < 0.01, **p < 0.05, *p < 0.1. 

3.4.2. Interaction Factor Detection Results 

Interaction detection was conducted to evaluate the synergistic effects of overlapping factors, as shown in Fig. 9. Most 

interactions exhibited two-factor enhancement or nonlinear enhancement, with q-values for combined factors consistently 

exceeding those of individual factors. This indicates that CELU spatial differentiation is shaped by the interplay of multiple 

factors. 

 

Fig. 9. Interaction Detection Results for Factors Influencing CO₂ Emissions in the Changchun-Jilin-Tumen Region. 
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For example, the interaction between X6 (Land area per capita) and X2 (Per capita GDP) produced the highest q-value of 

0.9960 in 2012, reflecting a strong synergistic effect. Similarly, in 2015, the interaction between X6 and X5 (Fixed asset 

investment) achieved a q-value of 0.9910, highlighting the combined influence of land use and regional investment. In 2018, the 

interaction between X2 and X5 yielded a q-value of 0.9918, underscoring the interconnectedness of economic growth and 

investment. By 2021, the interaction between X2 and X9 (Urbanization rate) achieved a q-value of 0.9918, illustrating the 

combined impact of urbanization and economic development. 

Even factors with lower individual q-values, such as X1 (Energy consumption per GDP), demonstrated strong interactive 

effects when paired with other variables. For instance, the interaction between X1 and X2 yielded a q-value of 0.798, indicating 

the amplified role of energy efficiency when combined with economic growth. In contrast, nonlinear weakening effects were 

observed in some cases, such as between X1 and X7, suggesting that improvements in energy efficiency can mitigate emissions 

associated with urban expansion. 

These findings demonstrate that CELU in the CJT region is influenced by a complex interplay of factors, with interactions 

frequently amplifying their combined effects. Integrated policies accounting for the synergistic relationships between 

urbanization, land use, economic growth, and industrial activity are essential for addressing spatial variability in emissions and 

achieving regional carbon reduction targets. 

3.5 Carbon Emission Forecast and Analysis 

In May 2022, the National Development and Reform Commission of China introduced the National Climate Change 

Adaptation Strategy 2035, which emphasizes comprehensive control of greenhouse gas emissions and the development of an 

enhanced policy framework for climate adaptation. Aligning with these national objectives of carbon peaking and neutrality, the 

People's Government of Jilin Province launched the 14th Five-Year Comprehensive Energy Conservation and Emission 

Reduction Implementation Plan. Within this context, the Changchun-Jilin-Tumen region, as a pilot area, carries a critical 

responsibility in driving carbon reduction efforts. 

This study investigates carbon emissions from land use in the Changchun-Jilin-Tumen region from 2012 to 2021, employing 

the grey model (GM (1,1)) to forecast emissions for the period 2022–2030. The results provide insights into regional carbon 

emission trends and inform strategies for achieving dual carbon goals. 

3.5.1 Model Construction and Validation 

The carbon emission time series data, with level ratios ranging from 0.1281 to 1.0573, were deemed suitable for GM (1,1) 

model construction. The development coefficient (a=−0.0157) and the grey effect coefficient (b=66,550.24) were derived during 

the modeling process. Validation demonstrated a posterior error ratio (C=0.0266) well below the threshold of 0.36, indicating 

excellent prediction accuracy. Furthermore, the model exhibited a maximum relative error of 0.0465, reaffirming its robustness 

and reliability for forecasting carbon emissions. These metrics confirm the GM (1,1) model as an appropriate tool for analyzing 

and predicting carbon emission trends in the region. 

3.5.2 Forecast Results 

The forecast indicates a steady increase in carbon emissions within the Changchun-Jilin-Tumen region from 2022 to 2030. 

Emissions are projected to rise from 78,484.364×104 t in 2022 to 88,985.198×104 t by 2030, reflecting a net increase of 10.5×106 

t over this period. Compared to 2012, when emissions were 67,594.462×104 t, this represents a 31.6% increase in emissions by 

2030 (Fig. 10). 
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Fig.10. Prediction of Land Use Carbon Emissions in Changchun-Jilin-Tumen from 2022 to 2030. 

The results highlight a significant misalignment with the region's stated goals of developing a "low-carbon industrial zone" 

and "livable cities." The upward trajectory underscores the necessity for more effective measures to curb emissions and accelerate 

progress toward carbon neutrality. 

Efforts to achieve dual carbon targets must focus on implementing comprehensive environmental regulations, particularly 

targeting high-energy consumption sectors. Optimizing the industrial structure is critical, requiring a transition from traditional 

energy-intensive industries to low-carbon and green industries to address emissions at their source. At the same time, expanding 

the adoption of renewable energy sources—such as solar, wind, and biomass—is essential to meet growing energy demands 

sustainably while reducing carbon output. 

Additionally, investments in pollution control technologies and environmental infrastructure are vital for enhancing carbon 

management capabilities. For instance, adopting carbon capture and storage (CCS) technologies in industrial facilities and 

modernizing energy grids could significantly mitigate emissions. Regulatory enforcement should be complemented by financial 

incentives for industries adopting low-carbon practices, ensuring alignment with regional and national sustainability goals. 

4. Discussion 

4.1. Temporal and Spatial Trends of Land Use Carbon Emissions 

This study provides a detailed county-level analysis of land use carbon emissions (CELU) in the Changchun-Jilin-Tumen 

region, addressing gaps in existing research, which predominantly focuses on national or provincial scales. While large-scale 

analyses are essential for identifying general patterns, the localized approach adopted here enhances the precision of policy 

recommendations and enables more targeted carbon reduction strategies. 

The results show a consistent increase in CELU, from 67,594.46 × 10⁴ t in 2012 to 81,942.35 × 10⁴ t in 2021. This rise is 

largely attributed to urbanization, industrial growth, and construction land expansion. Policies such as the Northeast 

Revitalization Strategy and the Tumen River Area Development Plan have supported economic development but have also 

exacerbated carbon emissions. A temporary decline in emissions during the COVID-19 pandemic highlights the sensitivity of 

carbon outputs to economic disruptions, suggesting that structural economic adjustments could have significant impacts on 

emission trajectories. 

Spatially, high-emission areas are concentrated in western and southern counties, driven by energy-intensive industries and 

urbanization, whereas lower emissions are observed in forest-rich eastern regions. These findings align with global trends 

observed in industrialized regions such as the Yangtze River Delta and the Guangdong-Hong Kong-Macao Greater Bay Area, 

where urban agglomerations are characterized by high energy demands and concentrated emissions(Chen et al., 2023; Zhang et 

al., 2023; Zhou et al., 2018). 
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In comparison, regions such as the Beijing-Tianjin-Hebei area show similar spatial clustering due to industrial hubs and 

high population densities(Yan et al., 2022). However, the Changchun-Jilin-Tumen region is distinguished by its reliance on 

primary industries and emerging urban centers, necessitating tailored strategies that combine industrial restructuring with 

sustainable urbanization. 

Persistent spatial clustering, as identified through Moran’s I analysis, underscores the necessity of region-specific mitigation 

strategies tailored to local drivers and hotspots of emissions. These strategies could serve as a model for other developing regions 

facing similar challenges, particularly those in Southeast Asia or Latin America, where urban growth and industrial activities are 

accelerating. 

4.2. Influencing Factors of Land Use Carbon Emissions 

The Optimal Parameters Geographical Detector (OPGD) model provides detailed insights into the primary factors 

influencing CELU. As shown in Table 7, the proportion of construction land (X7) consistently exhibits the highest explanatory 

power, with Q values ranging from 0.8735 in 2015 to 0.9059 in 2021. This underscores the significant impact of urban expansion 

on emissions, particularly in western counties where built-up land growth has increased energy demands for heating, lighting, 

and industrial production (Fig. 11). 

Primary industry output (X3) is another critical driver, with notable Q values in 2012 (0.8953) and 2018 (0.8772). This 

indicates that agricultural activities, including fertilizer and pesticide use, as well as land reclamation, contribute significantly to 

CELU. Addressing these emissions requires promoting sustainable agricultural practices and improving land management. 

In comparison to regions like the Yangtze River Delta, where secondary and tertiary industries dominate carbon emissions, 

the Changchun-Jilin-Tumen region’s reliance on primary industries calls for unique mitigation strategies. For instance, 

optimizing agricultural practices and reducing emissions from rural energy consumption could significantly contribute to 

emission reduction goals. 

Interaction analysis reveals that synergistic effects between factors, such as urbanization and per capita GDP, amplify their 

combined impact on emissions. This highlights the need for integrated strategies that address these interactions. For example, 

promoting mixed-use development and vertical urban expansion can limit land-use sprawl while meeting urban growth demands. 

Such approaches could be adapted to international contexts, such as rapidly urbanizing regions in Africa and South Asia, to 

manage emissions while supporting economic development. 

 

Fig. 11. Factor Detection Results for Land Use Carbon Emissions Using the OPGD Model 
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4.3. Carbon Emission Forecast and Analysis 

To address global climate change and support China's carbon peak and neutrality goals, Jilin Province has implemented the 

Carbon Emission Reduction Implementation Plan. As a key pilot region for development and openness, the Changchun-Jilin-

Tumen (CJT) region holds significant responsibility in these efforts. This study analyzes carbon emissions from land use in the 

CJT region from 2012 to 2022 and employs the Grey Model (GM (1,1)) to forecast emissions from 2022 to 2030. The results 

provide critical insights into the carbon reduction challenges faced by the region. 

The findings indicate that carbon emissions in the CJT region are expected to continue rising during the forecast period. 

Emissions are projected to increase from 78,484.364×104 t in 2022 to 88,985.198×104 t by 2030, representing a growth rate of 

14%. This upward trend reflects ongoing pressures from economic expansion and highlights the need for enhanced carbon 

mitigation measures. 

To align with national carbon peak and neutrality objectives, stricter and more effective emission reduction policies are 

essential, particularly in high-emission sectors. Strengthening support for green and low-carbon industries, optimizing industrial 

structures, and expanding the adoption of renewable energy are critical steps. Promoting low-carbon technologies and improving 

energy efficiency within enterprises are also necessary measures. While economic growth may lead to a short-term increase in 

urban land-use carbon emissions, achieving sustainable development will require coordinated efforts across government, 

enterprises, and society. 

Further research is needed to refine and validate the forecast model to better simulate long-term changes in carbon emissions. 

Such refinements will provide more robust tools for policymakers to plan and implement effective carbon reduction strategies. 

4.4. Policy implications 

Achieving carbon neutrality in the Changchun-Jilin-Tumen region requires a systematic and multi-layered approach that 

integrates localized governance, innovative policy tools, and lessons from international best practices. County-level carbon 

monitoring systems should be established to enhance the precision of emission data and facilitate evidence-based policy 

adjustments. These systems can leverage advanced technologies, such as satellite-based remote sensing, IoT sensors, and AI-

driven analytics, to track emissions in real time. For example, deploying smart meters to monitor industrial emissions can provide 

granular insights into emission hotspots, enabling precise intervention strategies. International experiences, such as Germany's 

municipal-level carbon monitoring frameworks under the European Green Deal, highlight the benefits of integrating monitoring 

platforms with regional governance to ensure effective and timely responses to emissions management challenges (European 

Commission, 2020). 

Land-use planning is another critical area for addressing emissions. Effective land-use policies should focus on limiting the 

expansion of construction land in high-emission counties while promoting vertical urban development and brownfield 

redevelopment. Such measures not only reduce the pressure on greenfield sites but also accommodate urban growth in a 

sustainable manner. Introducing carbon taxes on land conversion from agricultural or forested areas to urban use could 

disincentivize sprawl, while offering subsidies for high-density, mixed-use developments can encourage vertical urban growth. 

Singapore provides an exemplary model, where strict zoning laws and incentives for vertical development have minimized land 

use without compromising economic or population growth（Urban Redevelopment Authority (URA)，2022）. 

Transforming the industrial sector is vital for mitigating emissions in western high-emission regions. Incentivizing 

industries to adopt clean technologies and renewable energy through targeted policies, such as green subsidies and low-interest 

loans, can significantly reduce industrial carbon intensity. Additionally, implementing carbon pricing mechanisms and cleaner 

production standards aligns with successful strategies observed in the Yangtze River Delta and the Guangdong-Hong Kong-

Macao Greater Bay Area(Sun & Miao, 2022; Wu, 2023). These regions have demonstrated that financial and regulatory 

incentives can encourage industrial sectors to adopt low-carbon innovations and renewable energy sources. Furthermore, 
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Denmark’s national policies integrating renewable energy into industrial operations offer valuable insights, showing how 

coordinated government action can drive sector-wide transformation（Danish Energy Agency, 2020）. 

In the eastern counties, which are dominated by forested landscapes, conservation and restoration efforts are crucial to 

enhancing their function as natural carbon sinks. Policies such as Payment for Ecosystem Services (PES) can provide financial 

incentives to local communities for maintaining and restoring forested areas. Forest carbon offset programs could also be 

introduced, enabling industries to fund afforestation and reforestation projects in exchange for carbon credits. Brazil’s Amazon 

conservation initiatives serve as a useful reference, illustrating how international funding mechanisms and stringent deforestation 

controls can enhance forest preservation efforts（Brazilian Ministry of the Environment，2022）. These strategies align with 

China’s broader ecological conservation goals while contributing to global carbon sink enhancement. 

Lastly, fostering integrated collaboration among urban planners, industrial stakeholders, and policymakers is essential for 

developing comprehensive strategies that address the multifaceted drivers of emissions. Establishing cross-sectoral governance 

frameworks, such as regional carbon councils, can facilitate the alignment of local, regional, and national policies. The European 

Green Deal provides an effective model for such integration, where partnerships between local governments and private 

enterprises have successfully advanced green infrastructure projects（European Commission，2020). Drawing from these 

international practices, the Changchun-Jilin-Tumen region can design collaborative frameworks that align economic 

development with environmental sustainability, contributing to China’s dual-carbon goals while setting a benchmark for other 

developing regions globally. 

4.5. Contributions and Limitations 

This study advances existing methodologies by combining nighttime light data with the OPGD model, offering significant 

improvements in spatial resolution and accuracy. Nighttime light data, a reliable proxy for human activity and energy 

consumption, enables high-resolution spatial analyses, while the OPGD model identifies key emission drivers and their 

interactions. This approach overcomes traditional methods' limitations by capturing fine-scale spatial heterogeneity and detecting 

nonlinear relationships among influencing factors. It also offers a replicable framework for other regions with similar data 

constraints, contributing to global carbon neutrality efforts. 

However, some limitations remain. Nighttime light data, while effective for energy-related emissions, may underestimate 

emissions from agricultural and forestry activities. Additionally, the temporal scope of this study (2012–2021) may not fully 

reflect the long-term impacts of recent policy interventions or structural changes in energy consumption. Future research could 

extend the analysis period, incorporate cross-regional comparisons, and test the proposed methodologies in other international 

contexts, such as emerging economies or densely populated urban agglomerations. 

5. Conclusion 

This study investigates the spatiotemporal evolution and spatial differentiation of county-level land use carbon emissions 

(CELU) in the Changchun-Jilin-Tumen region from 2012 to 2021, integrating land use data, nighttime light imagery, and socio-

economic statistics with the Optimal Parameter Geodetector (OPGD) model. The findings reveal a 21.2% increase in CELU, 

from 67,594.46×104 t in 2012 to 81,942.35×104 t in 2021. Emissions are concentrated in western and southern counties with 

significant industrial activity and urbanization, whereas forest-rich central and eastern counties exhibit lower emissions. The 

primary drivers of CELU are the proportion of construction land (q-value: 0.8882), land area per capita (q-value: 0.7609), and 

urbanization rate (q-value: 0.5875), underscoring the critical role of land-use patterns and urbanization in shaping spatial 

emission variability. 

Building on these results, the Grey Model (GM (1,1)) predicts that CELU will continue to rise, from 78,484.364×104 t in 

2022 to 88,985.198×104 t by 2030, reflecting a 14% increase over the forecast period and a 31.6% rise compared to 2012 levels. 

This upward trend highlights the misalignment between current trajectories and the region's goals of establishing a "low-carbon 
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industrial zone" and "livable cities." Addressing these challenges requires targeted measures, including transitioning to renewable 

energy and high-tech industries, optimizing industrial structures, and limiting the expansion of construction land in high-emission 

areas. Land-use optimization through brownfield redevelopment and ecological land protection, combined with stricter zoning 

regulations, will further support sustainable urban development. 

To accelerate emission reductions, the government must prioritize technological innovation through subsidies, tax 

incentives, and public-private partnerships, fostering the adoption of energy-efficient technologies. Pilot programs for smart 

grids and sustainable urban designs can enhance mitigation efforts, while public awareness campaigns and incentives for low-

carbon lifestyles are essential for encouraging community-level participation. This study provides a replicable high-resolution 

analytical framework for understanding carbon emission drivers and spatial patterns. Its adaptability enables application to other 

regions and future timeframes, offering insights for refining emission reduction strategies. By implementing evidence-based 

measures, the Changchun-Jilin-Tumen region can serve as a model for achieving balanced economic growth and sustainability, 

contributing to both national and global climate goals. 
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