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Abstract: Aeromagnetic exploration is a magnetic field exploration method that detects changes in 

the spatial magnetic field by carrying a magnetometer on an aircraft. However, during the 

measurement process, the magnetic field data is often interfered by the aircraft’s own ferromagnetic 

materials and maneuvers. The role of aeromagnetic compensation is to eliminate this part of the 

interference, which is crucial to improving the quality of aeromagnetic exploration data. In this study, 

we introduce a novel method for aeromagnetic compensation, which is employed to eliminate the 

interference from aircraft platforms. The proposed method utilizes complete ensemble empirical 

mode decomposition with adaptive noise (CEEMDAN) to decompose the magnetic field data into 

multiple feature components. These decomposed features are subsequently input into a physics- 

guided neural network (PGNN), which was designed to remove magnetic interference from the data. 

The core idea behind this method is that CEEMDAN effectively decomposes magnetic field data into 

features that are more easily learned by the neural network. The method leverages both data-driven 

and model-driven advantages by embedding the Tolles–Lawson (T-L) model into the neural network, 

thereby compensating for both linear and nonlinear interference. The results of simula tion and real 

experiments show that the proposed method outperforms traditional model-driven and data-driven 

techniques, especially when the quantity and quality of data are limited. 

Keywords: Aeromagnetic compensation; complete ensemble empirical mode decomposition with 

adaptive noise; physics-guided neural network 

 

 

1. Introduction 

Unmanned aerial vehicle (UAV) aeromagnetic surveys are extensively utilized in geological exploration, 

military reconnaissance, unexploded ordnance detection, and other fields [1,2] due to their ability to balance 

detection efficiency with spatial resolution [3]. However, the raw data collected by magnetic survey systems 

often contain interferences from platforms, equipment, and other sources, in addition to the geomagnetic 

background field and target anomaly field. Such interference degrades data quality and compromises the accuracy 

of data interpretation [4]. Therefore, effective aeromagnetic compensation is essential for enhancing the quality of 

magnetic survey data [5]. 

Research on aeromagnetic compensation originated in the 1940s, when Tolles introduced the Tolles–Lawson 

(T-L) model [6]: a foundational method for addressing aeromagnetic interference. The T-L model decomposes the 

magnetic interference caused by aircraft maneuvers into three components: a constant magnetic field, an induced 

magnetic field, and an eddy current magnetic field. These components are expressed as a linear equation with 18 

coefficients that must be determined [7]. Based on this, Leliak designed a compensation flight test that requires the 

aircraft to perform strict sinusoidal maneuvers to enhance compensation accuracy [8]. However, the T-L model 

assumes that the geomagnetic field is constant, the established equation is ill-conditioned, and there is strong 

multicollinearity between the input features, which leads to a low compensation accuracy to the model [9]. To 
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address this, Hardwick [10] proposed the ridge regression algorithm as a replacement for the original least squares 

(LS) method to solve the coefficients. Ridge regression utilizes L2 regularization to mitigate the collinearity 

problem, thereby improving the numerical stability of the solution. Wu et al.  [11] employed principal 

component analysis to reduce the dimensionality of the input features, which alleviates multicollinearity to some 

extent. Additionally, partial least squares regression, truncated singular value decomposition [12], and other 

methods have been used to solve the compensation coefficients of the T-L model, and they have achieved certain 

results. Zhao et al. [13] discovered that the variables con- tributing to multicollinearity are related to flight 

direction, and they proposed identifying the flight direction of the aircraft. They then used variance inflation 

factors to assess the impact of model input features on multicollinearity and eliminated redundant features to 

enhance the stability of the numerical solution. Building on this,  Bi et al. [14] incorporated the T-test to further 

eliminate less significant variables, thereby reducing the coupling of input features. The aforementioned research 

on aeromagnetic interference compensation was based on the T-L model, which suffers from several limitations: 

(1) it assumes that geomagnetic conditions are constant, which may not hold in real-world scenarios; (2) the 

linear assumption fails to account for complex nonlinear interference from onboard electronic systems [15]; and 

(3) the strong multicollinearity among input features leads to ill-conditioned equations, thereby reducing 

compensation accuracy [16]. 

Neural network methods have increasingly been integrated into aeromagnetic compensation with the 

advancement of artificial intelligence [17]. These methods aim to leverage the powerful nonlinear mapping 

capabilities of neural networks to overcome the limitations inherent in the T-L model. The earliest attempt was by 

Williams [18], who implemented a BP neural network (BPNN), which consists of three sub-networks that are used 

to predict magnetic field values. The inputs included position, time, and attitude information, while  the output 

comprised the sum of the Earth’s background field, time-varying field, and aircraft interference field. Reference 

[19] introduced an artificial neural network based on a radial basis function using the three components of the 

fluxgate magnetometer as input features, and they achieved superior compensation performance compared to the 

BPNN. Reference [20] applied a residual neural network for aeromagnetic interference  compensation using the 

attitude information matrix from the T-L model as the neural network input and residual connections to effectively 

mitigate the gradient vanishing problem, thereby enhancing the network’s stability and trainability. Beyond 

artificial neural networks, other neural network architectures, such as CNN [21] and LSTM [22], have also  been 

explored in aeromagnetic compensation. Given that the magnetometer and aircraft are  not entirely rigidly 

connected, reference [21] analyzed the nonlinear relationship between tail boom swing displacement and magnetic 

interference. A 1D CNN was employed for secondary compensation of the T-L model’s compensation data, aiming 

to minimize the impact of aeromagnetic swing noise. However, data-driven methods also face several challenges: 

(1) they require large datasets for training, which may not be feasible given the high cost of acquiring aeromagnetic 

flight data; (2) feature selection remains an open issue, as different input features can significantly impact 

compensation effectiveness; and (3) purely data-driven models lack physical interpretability, making it difficult to 

validate their reliability in real-world applications. The physics-guided neural network (PGNN) [23] represents one 

of the latest advances in machine learning. By combining physical models with neural networks, it addresses the 

limitation of data-driven methods in neural networks. This method uses features derived from physical models as 

neural network inputs, or it employs physical models to guide the loss functions, thereby enhancing the  

generalizability, scientific consistency, and interpretability of neural networks. Although  this method has shown 

promising results in engineering fields such as wear prediction [24], power load forecasting [25],  and lake 

temperature modeling, it has yet to be fully explored in aeromagnetic compensation. 

To address these limitations, we propose a novel aeromagnetic compensation method that integrates complete 

ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and PGNN. Our approach is based  

on the following hypotheses: (1) The CEEMDAN method can effectively decompose the original aeromagnetic 

signal into meaningful feature components, thereby improving feature selection and enhancing neural network 

learning [26]; (2) embedding the T-L model into the neural network loss function can provide physical 

constraints, ensuring the consistency of the learned compensation model with aeromagnetic principles [27]; and 

(3) combining CEEMDAN and PGNN can improve compensation performance by leveraging the strengths of 

both data-driven and model-driven approaches, particularly under conditions of limited data quantity or quality. 

The key contributions of this work are as follows: (1) a hybrid compensation framework that integrates 

CEEMDAN-based feature decomposition with PGNN, thereby effectively addressing both linear and nonlinear 

aeromagnetic interference; (2) a novel loss function incorporating the T-L model, which enhances the 

interpretability and stability of the neural network while maintaining the flexibility of data-driven learning; and (3) 
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experimental vali- dation through simulation and real-world UAV flight tests, demonstrating that our method 

outperforms traditional model-driven (LS, ridge regression) and data-driven (BPNN,LSTM) approaches, particularly 

in challenging data conditions. This paper is structured as follows: Section 2 introduces the T-L model and the 

proposed CEEMDAN-PGNN method in detail, as well as the entire experimental process, including experimental 

equipment, data acquisition, and compensation effect evaluation indicators. Section 3 introduces the experimental 

results, compares different methods, and analyzes their performance. Section 4 conducts  an in-depth analysis and 

discussion of the results, compares the similarities and differences with existing studies, and explores the 

significance and limitations of this work. Finally, Section 5 summarizes our research results as the conclusion of 

this paper. 

 

2. Materials and Methods 

2.1. T-L Model 

A rectangular coordinate system was established to effectively describe the T-L model, as depicted in Figure 1. 

The measurement system was mounted on the aircraft body to measure the magnetic field, with the axes x, y, and z 

representing the three coordinate axes of the reference system. The origin O was located at the center of the drone. 

The vector magnetic field sensor’s coordinate system aligned with the reference rectangular coordinate system that is 

shown in the figure. At a given moment, the measurement results were T(t),  L(t), and V( t),  where He represents the 

real magnetic signal. 

 
Figure 1. Reference coordinate system definition. 

In aeromagnetic measurements, the value recorded by the airborne magnetometer  represents the sum of the 

real magnetic field and the interference field generated by the aircraft [28]. This relationship can be expressed as a 

vector addition: 

                       

𝐇𝐭 = 𝐇𝐞 + 𝐇𝐝 (1)               

where H d  is the aircraft magnetic interference field vector. Given that 𝐻𝑒 ≫ 𝐻𝑑, the output of the optical pump 

magnetometer can be considered equivalent to the sum of the projections of both the geomagnetic field and the 

interference field in the direction of the geomagnetic field: 

𝐻𝑡 = 𝐻𝑒 + 𝐻𝑑 ⋅ cos 𝜑 = 𝐻𝑒 + 𝐻𝑖 (2)         

where φ represents the angle between the geomagnetic field and the interference field, He denotes the magnitude of 

the geomagnetic field vector, Hd denotes the magnitude of the interference field vector, and Hi is the projection of 

the interference field onto the direction of the geomagnetic field. 

Fluxgate magnetometers are typically employed to measure the angle between the platform and the 

geomagnetic field direction [29]. In the reference rectangular coordinate system oxyz, the direction cosines u1, u2, 

and u3 of the geomagnetic field are expressed as follows: 

 

𝑢1 = cos 𝑋(𝑡) =
𝑇(𝑡)

√𝑇(𝑡)2 + 𝐿(𝑡)2 + 𝑉(𝑡)2
(3) 

𝑢2 = cos 𝑌(𝑡) =
𝐿(𝑡)

√𝑇(𝑡)2 + 𝐿(𝑡)2 + 𝑉(𝑡)2
(4) 
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𝑢3 = cos 𝑍(𝑡) =
𝑉(𝑡)

√𝑇(𝑡)2 + 𝐿(𝑡)2 + 𝑉(𝑡)2
(5) 

The magnetic interference generated by the aircraft is primarily due to the presence of ferromagnetic materials, 

the motor, and the electronic control system. This interference can be categorized into three types based on its 

source: the constant magnetic field, induced magnetic field, and eddy current magnetic field [30]. The constant 

magnetic field, which arises from the residual magnetism of ferromagnetic materials within the aircraft, remains 

unaffected by changes in the aircraft’s attitude. This field can be represented in the body coordinate system as 

follows: 

        

𝐇𝐩𝐞𝐫𝐦 = 𝑎1𝐢 + 𝑎2𝐣 + 𝑎3𝐤 (6) 

 

where Hperm denotes the constant magnetic field vector, while i, j, and k represent the unit vectors along the 

coordinate axes of the body coordinate system. The coefficients ai (i = 1, 2, 3) correspond to the components of the 

constant magnetic field along these axes. By projecting the constant field onto the direction of the geomagnetic field, 

the scalar value of the constant field Hperm can be expressed as follows: 

𝐻𝑝𝑒𝑟𝑚 = 𝑎1𝑢1 + 𝑎2𝑢2 + 𝑎3𝑢3 = ∑ 𝑎𝑖𝑢𝑖

3

𝑖=1

(7) 

The induced magnetic field arises from the magnetization of ferromagnetic materials within the aircraft due to the 

geomagnetic field. This field is directly proportional to the strength of the geomagnetic field and can be expressed 

as follows: 

 

𝐇𝐢𝐧𝐝 = 𝐻𝑒[(𝑏11𝑢1 + 𝑏12𝑢2 + 𝑏13𝑢3)𝐢

+(𝑏21𝑢1 + 𝑏22𝑢2 + 𝑏23𝑢3)𝐣

+(𝑏31𝑢1 + 𝑏32𝑢2 + 𝑏33𝑢3)𝐤]

(8) 

 

where Hind denotes the induced magnetic field vector, and bij (i, j = 1, 2, 3) represent the nine induced magnetic 

field coefficients. When projected in the direction of the geomagnetic field, the scalar value of the induced magnetic 

field Hind can be expressed as follows: 

 

𝐻𝑖𝑛𝑑 = 𝐻𝑒(𝑢1 𝑢2 𝑢3) (
𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

) (

𝑢1

𝑢2

𝑢3

) 

= 𝐻𝑒 ∑ ∑ 𝑏𝑖𝑗𝑢𝑖𝑢𝑗

3

𝑗=1

3

𝑖=1

                                  (9) 

The eddy current magnetic field is generated when high conductivity materials within the aircraft intersect 

with the magnetic flux lines as the flight attitude changes. The components of this field along each axis are 

proportional to the rate of change in the geomagnetic field strength, as expressed by the following equation: 

𝐇𝐞𝐝𝐝𝐲 = 𝐻𝑒[(𝑝11𝑢1
′ + 𝑝12𝑢2

′ + 𝑝13𝑢3
′ )𝐢

+(𝑝21𝑢1
′ + 𝑝22𝑢2

′ + 𝑝23𝑢3
′ )𝐣

+(𝑝31𝑢1
′ + 𝑝32𝑢2

′ + 𝑝33𝑢3
′ )𝐤]

(10) 

where Heddy represents the eddy current magnetic field vector, with pij (i, j = 1, 2, 3) denoting the nine eddy 

current magnetic field coefficients, and 𝑢𝑖
′
 ( i = 1,  2, 3) representing the time derivative of  ui . The projection of the 

eddy current magnetic field in the direction of the geomagnetic field Heddy can be expressed as follows: 

 



Fuel Cells Bulletin 
ISSN: 1464-2859 

104 
 

Vol: 2025|Iss: 1|2025|© 2025 Fuel Cells Bulletin 

𝐻𝑒𝑑𝑑𝑦 = 𝐻𝑒(𝑢1 𝑢2 𝑢3) (

𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

) (

𝑢1
′

𝑢2
′

𝑢3
′

)

= 𝐻𝑒 ∑ ∑ 𝑝𝑖𝑗𝑢𝑖𝑢𝑗
′

3

𝑗=1

3

𝑖=1

                                            

(11) 

 

According to Equations (7), (9), and (11), the scalar value of magnetic interference can be expressed as follows: 

𝐻𝑖 = 𝐻𝑝𝑒𝑟𝑚 + 𝐻𝑖𝑛𝑑 + 𝐻𝑒𝑑𝑑𝑦                               

                        = ∑ 𝑎𝑖𝑢𝑖

3

𝑖=1

+ 𝐻𝑒 ∑ ∑ 𝑏𝑖𝑗𝑢𝑖𝑢𝑗

3

𝑗=1

3

𝑖=1

+ 𝐻𝑒 ∑ ∑ 𝑝𝑖𝑗𝑢𝑖𝑢𝑗
′

3

𝑗=1

3

𝑖=1

(12) 

 

 

The formula above represents a T-L model expression that contains 21 coefficients. However, due to the 

symmetry of the induced magnetic field coefficient matrix, this expression can be reduced to one containing 

only 18 coefficients [31]: 

𝐻𝑖 = ∑ 𝑐𝑖𝐴𝑖

18

𝑖=1

(13) 

             

 

where ci (i = 1, 2, ...18) represents the 18 coefficients to be calculated, while Ai (i = 1, 2, ...18) is the coefficient 

matrix composed of the real magnetic field modulus, direction cosines,  and their derivatives. During flight, n data 

points are continuously sampled, leading to the following matrix form corresponding to Equation 13: 

𝐇𝐢 = 𝐀𝐜 (14) 

where c is a column vector consisting of 18 magnetic compensation coefficients, A is a coefficient matrix 

consisting of Ai at n moments, and Hi is the platform interference magnetic field extracted from the optical 

pump data, which are defined as follows:  

𝐀 = [

𝐴1(1) 𝐴2(1) ⋯ 𝐴18(1)

𝐴1(2) 𝐴2(2) ⋯ 𝐴18(2)
⋮ ⋮ ⋱ ⋮

𝐴1(𝑛) 𝐴2(𝑛) ⋯ 𝐴18(𝑛)

] , 𝐇𝐢 = [

𝐻𝑖(1)

𝐻𝑖(2)
⋮

𝐻𝑖(𝑛)

] , 𝐜 = [

𝑐1

𝑐2

⋮
𝑐18

] (15) 

 

The compensation coefficient can be determined using least squares regression as follows: 

𝐜 = (𝐀𝑇𝐀)−1𝐀𝑇𝐇𝐢 (16) 

To address the ill-posed problem arising from multicollinearity, the coefficient c can alternatively be 

calculated using the ridge regression method [10]: 

𝐜 = (𝐀𝑇𝐀 + 𝜆𝐈)−1𝐀𝑇𝐇𝐢 (17) 

where λ is the regularization coefficient. 

 

2 .2 .  CEEMDAN Algorithm 

In aeromagnetic compensation, the raw magnetic field signal is often nonlinear and nonstationary, making it 

challenging for traditional machine learning models to extract effective features. To address this, empirical mode 

decomposition (EMD) and its improved versions, ensemble empirical mode decomposition (EEMD) [34] and 

CEEMDAN, have been widely applied for signal preprocessing. EMD decomposes a signal into a set of 

intrinsic mode functions (IMFs) through an iterative process.  However, it suffers from mode mixing, where 
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IMFs contain components of widely different scales, leading to poor  decomposition quality. To mitigate this issue, 

EEMD was proposed, introducing white noise to force the decomposition into more distinct modes. While EEMD 

significantly reduces mode mixing, it has two main limitations: (1) residual noise contamination, where each 

IMF in EEMD contains residual noise due to the added white noise, thereby affecting the stability and accuracy of 

the decomposition; and (2) non-complete reconstruction, where the original signal cannot be perfectly reconstructed 

because EEMD does not fully compensate for the introduced noise. CEEMDAN was developed as an 

enhancement over EEMD to further improve decomposition accuracy and ensure complete signal 

reconstruction. The key advantages of CEEMDAN over EEMD are as follows: (1) Elimination of residual noise 

as CEEMDAN introduces a new noise-assisted decomposition strategy, where noise is adaptively added to each 

stage of the decomposition. This ensures that each IMF is extracted with minimal interference, leading to more 

stable and reliable decomposition results. (2) Complete signal reconstruction as, unlike EEMD, CEEMDAN 

ensures that the sum of all IMFs and the final residual perfectly reconstruct the original signal, preserving critical 

information for subsequent analysis. (3) Improved mode separation, which is achieved by refining the iterative 

noise-assisted decomposition process, where CEEMDAN generates IMFs with better mode separation, thus 

reducing the risk of mode aliasing and ensuring that each IMF represents a distinct frequency component. (4) 

Better adaptability to nonstationary signals, which is achieved given that aeromagnetic interference contains  both 

stationary and nonstationary components, and CEEMDAN has the ability  to handle complex signal variations, 

thereby enhancing its effectiveness in feature extraction. The flowchart of CEEMDAN is shown in Figure 2. The 

specific steps are as detailed below. 

(1) Add white noise: White noise of different amplitudes is added to the original signal s(t) to generate multiple 

noisy signals. 

𝑠𝑖(𝑡) = 𝑠(𝑡) + 𝜖0 𝑛𝑖(𝑡) (18) 

where ϵ0 is the noise amplitude, ni (t) is the white noise sequence, and i is the number of different noise realizations. 

 

 
Figure 2. A flowchart of the CEEMDAN algorithm. 

 

(2)   Perform EMD decomposition: EMD decomposition is performed on each noisy signal si(t) to obtain its 

first IMFs. Then, the average of the first IMFs of all noisy signals is calculated to obtain the first complementary 

IMFs: 
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𝐼𝑀𝐹1 =
1

𝑁
∑ 𝐸1(𝑠(𝑡) + 𝜖0 𝑛𝑖(𝑡))𝑁

𝑖=1 (19)
     

 

where En (*) is defined as the nth mode component of the EMD. 

(3)   Calculate the first residual: The first complementary IMFs from the original signal s(t) are subtracted to 

obtain the first residual signal: 

𝑟1(𝑡) = 𝑠(𝑡) − 𝐼𝑀𝐹1 (20) 

(4)   Constructing a new signal is achieved with the following: 

𝑠1(𝑡) = 𝑟1(𝑡) + 𝐸1(𝑛𝑖(𝑡)) (21) 

EMD decomposition is performed on the constructed new signal. Then, the second modal component is obtained: 

𝐼𝑀𝐹2 =
1

𝑁
∑ 𝐸1(𝑟1(𝑡) + 𝜖1 𝐸1(𝑛𝑖(𝑡)))

𝑁

𝑖=1

(22) 

(5)   Iterative processing: Steps 3 and 4 are repeated to obtain the nth residual signal and the n + 1th IMFs: 

𝑟𝑛(𝑡) = 𝑟𝑛−1(𝑡) − 𝐼𝑀𝐹𝑛(𝑡) (23) 

𝐼𝑀𝐹𝑛+1 =
1

𝑁
∑ 𝐸1(𝑟𝑛(𝑡) + 𝜖𝑛 𝐸𝑛(𝑛𝑖(𝑡)))

𝑁

𝑖=1

(24) 

(6)   Stopping criteria: The iteration process terminates when the residual signal rn(t) becomes a monotonic 

function or when its energy is negligible. At this point, the original signal can be expressed as follows: 

where K is the number of IMFs of CEEMDAN, and r(t) is the final residual. 

𝑠(𝑡) = ∑ 𝐼𝑀𝐹𝑛

𝐾

𝑛=1

+ 𝑟(𝑡) (25) 

2.3. Physics-Guided Neural Network 

2.3.1. Basic Structure 

Conventional neural network aeromagnetic compensation methods completely rely on data-driven methods 

to eliminate magnetic interference. These methods as black-box models, which are inherently difficult to interpret 

and involve complex input features. The variability in input features can result insignificantly inconsistent 

compensation outcomes. To overcome these limitations, we propose a novel compensation method that integrates 

both physical model-driven and data-driven frameworks. This method utilizes sequences decomposed by 

CEEMDAN as feature inputs for the network model, eliminating the need for extensive experimentation to identify 

optimal input features. The decomposed signals exhibit more distinct characteristics, allowing the neural network 

to extract the necessary information more effectively and efficiently. The proposed method is illustrated in Figure 3. 

A neural network based on a common data-driven framework [32] is illustrated in Figure 4. The network 

takes, as input, the time coordinates of the magnetic signal, the three-component fluxgate data, the aircraft’s 

direction cosines, and other relevant variables, with the real magnetic signal as the output. In contrast, our proposed 

method employs the total magnetic field signal sequence, which is decomposed by CEEMDAN, as the network  

input, with the interference field as the output. The final clean magnetic field is obtained by subtracting the 

predicted interference field Hi from the input total magnetic field Ht. This method integrates a physical model 

with the data-driven framework by embedding the T-L model into the final output, where the magnetic interference 

coefficient c serves as a trainable parameter that is synchronously updated with the network weights and biases.  

2.3.2. T-L Model Embedded Loss Function 

Inspired by the concept of PGNN [23], this paper integrated the T-L model with a neural network model. 

This combined method guides the neural network in learning a  physically consistent solution. The first part of the 

loss function is defined by the T-L model: 
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𝐿𝑜 𝑠 𝑠1(𝐜; 𝐻𝑖) =
1

𝑁
‖𝐀𝐜 − 𝐻𝑖𝑙𝑎𝑏𝑒𝑙‖2

2 (26) 

The loss function of the T-L model constraint is a function of the neural network input and output, where c is 

the compensation coefficient, Hi is the model prediction value, Hilabel is the true value, and N is the data length. The 

vector A is calculated from the model input Ht, output Hi, and the direction cosines ui and their derivatives. 

 
Figure 3. A network structure based on complete ensemble empirical mode decomposition with adaptive noise 

and physics-guided neural network (CEEMDAN-PGNN): the input data are the total magnetic field with 

interference, and the output is the interference. 

 

 
Figure 4. A network structure based on BP neural network (BPNN): the input is the measured data and the output 

is the clean magnetic field. 

 

The specific calculation method is shown in Equations (3)-(5) and (12)-(14), and it will not be repeated here. This 

method combines the output of the neural network with the input information in the loss function, and it guides 

the output of the PGNN to converge to the direction defined by Equation (13). 

The second part of the loss function is constrained by the data: 

𝐿𝑜 𝑠 𝑠2(𝜽; 𝐻𝑖) =
1

𝑁
‖𝐻𝑖 − 𝐻𝑖𝑙𝑎𝑏𝑒𝑙 ‖2

2 (27) 
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where θ represents the weights and bias of the neural network. 

In addition, L2 regularization terms were introduced to penalize model parameters [33], mitigate 

overfitting, and enhance the robustness of the neural network model.  The final loss function is expressed as 

follows: 

𝐿𝑜 𝑠 𝑠(𝜽, 𝐜; 𝐻𝑖) = 𝛼 Loss1(𝐜; 𝐻𝑖) + 𝐿𝑜 𝑠 𝑠2(𝜽; 𝐻𝑖) + 𝛽‖𝜽‖2
2 (28) 

where the hyperparameters α and β represent the strength of the physical model and regularization constraints. 

When α is 0, the loss function only becomes constrained by the data. 

In the network model, the structure is organized into an input layer, hidden layers, and an output layer. 

The network’s input feature is denoted by h, and the connections between the neural network nodes are 

represented by the parameters (ω, b) = (ω1, b1, ω2, b2, . . . , ωl , bl), where ωl is the weight connecting the (l-

1)th layer to the lth layer and bl is the bias of the lth layer. During forward propagation, the input and output of a 

neural network node are as follows: 

ℎ𝑝,𝑖𝑛
(𝑙+1)

= ∑ ℎ𝑖,𝑜𝑢𝑡
(𝑙)

𝜔𝑖
(𝑙+1)

𝑁𝑙

𝑖=1

+ 𝑏(𝑙+1) (29) 

ℎ𝑝,𝑜𝑢𝑡
(𝑙+1)

= 𝑓(ℎ𝑝,𝑖𝑛
(𝑙+1)) (20) 

where Nl is the number of nodes in layer l, f (·) is the activation function, and the superscripts l and l + 1 

indicate the number of layers. 

During back propagation, the gradients of the network parameters are updated using the chain rule. 

𝜕𝐿𝑜 𝑠 𝑠(𝜽, 𝒄)

𝜕𝜃𝑖𝑗
(𝑙)

=
𝜕𝐿𝑜 𝑠 𝑠(𝜽, 𝒄)

𝜕ℎ𝑖,𝑚
(𝑙)

𝜕ℎ𝑖,𝑚
(𝑙)

𝜕𝜃𝑖𝑗
(𝑙)

= 𝛿𝑖
(𝑙)

ℎ𝑗,𝑜𝑢𝑡
(𝑙−1) (31) 

where the first subscript i represents the i-th node in the l-th layer, and the second subscript j represents the j-th node 

in the (l-1)th layer. In addition, δ is the error term, which is defined as follows: 

𝛿𝑖
(𝑙)

= ∑ 𝛿𝑗
(𝑙+1)

𝜕ℎ𝑗,𝑖𝑛
(𝑙+1)

𝜕ℎ𝑖,𝑜𝑢𝑡
(𝑙)

𝜕ℎ𝑖,𝑜𝑢𝑡
(𝑙)

𝜕ℎ𝑖,𝑖𝑛
(𝑙)

𝑁𝑙+1

𝑗=1

(32) 

𝛿(𝐿) =
𝜕𝐿𝑜 𝑠 𝑠(𝜽, 𝒄)

𝜕ℎ𝑜𝑢𝑡
(𝐿)

𝜕ℎ𝑜𝑢𝑡
(𝐿)

𝜕ℎ𝑖𝑛
(𝐿)

(33) 

The input features undergo forward propagation to generate the output. Subsequently, the gradients of each 

weight and bias in the neural network are computed through back propagation. During training, these parameters 

are updated using the gradient descent algorithm to minimize the loss function. The compensation coefficient c 

is initialized by (17) and is also updated using gradient descent during network training.  

2.4. Experimental Setup 

2.4.1. Compensation Process 

The specific steps of the proposed method are as detailed below. 

(1)   Flight Experiments: 

Flight experiments and simulations are conducted to obtain the datasets, with the  detailed methodology 

described in the subsequent section. Notably, compared to conventional neural networks, the proposed 

CEEMDAN and physical model-guided neural network requires fewer datasets to achieve superior 

compensation performance. 

(2)   Dataset Generation: 

The collected data are eigendecomposed, and the generated sequences and the actual interference field Hilabel obtained 

by bandpass filtering are assembled into a dataset. 

(3)   Compensation Coefficient Initialization: 
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The compensation coefficient c is treated as a set of trainable parameters within the network. Its initial value is 

computed based on the T-L model. 

(4)   Model Training: 

The model is trained using the dataset from Step 2, employing the ReLU activation function, Adam optimization 

algorithm, and MSE loss function. 

(5)   Hyperparameter Optimization: 

The hyperparameters to be optimized include the network architecture, loss function weights, batch size, etc. The 

training results under various parameter combinations are assessed to determine the optimal hyperparameters. 

(6)   Compensation Test: 

The trained network is tested to evaluate its compensation effectiveness and robust- ness, and the overall model 

performance is assessed. 

The detailed network parameter settings are shown in Table 1.  

 

Table 1. Parameter settings for the network. 

Parameters Configuration 

Input layer 
The sequences of the total magnetic field signal after 

decomposition by CEEMDAN 

Output layer Magnetic interference 

Hidden layer structure 10-10-16 

Batch size 512 

Epoch size 500 

Optimizer Adam 

Loss criterion MSE loss 

 

2.4.2. Flight Experiment 

To validate the effectiveness of the proposed method, a multi-rotor UAV was employed to conduct flight tests 

for collecting aeromagnetic data. The complete test system is illustrated in Figure 5. The UAV platform utilizes 

GPS for positioning. A cesium optical pump magnetometer and a fluxgate magnetometer are rigidly attached to 

the data acquisition system via carbon rods. The optical pump magnetometer model is CAS-18-VL, which is used 

to measure the scalar magnetic field in space. The fluxgate magnetometer model is Mag-03MS1000, which is 

produced by Bartington, UK, and it is mainly used to obtain the attitude information of the UAV. The specific 

parameters are shown in Table 2. 

 

Table 2. The technical specifications of the magnetic sensors. 

Technical indicators Mag-03MS1000 CAS-18-VL 

Measuring range ±70/100/250/500/1000µT 10000-105000nT 

Noise level 6~10pT/sqrt Hz@1Hz 0.3pT/sqrt Hz@1Hz 

Size 32×32×152mm Φ53×130mm 

Weight 0.16kg 0.5kg 

 

 
Figure 5. The unmanned aerial vehicle (UAV) experimental platform. 
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Since aeromagnetic interference originates from platform-induced disturbances, specific flight maneuvers are 

necessary to effectively excite and separate different interference components. Inspired by the Leliak flight 

pattern [8], we designed a controlled flight maneuvering strategy tailored for UAVs to evaluate the 

compensation performance under different attitude variations. (1) Pitch oscillation maneuvers were performed 

by tilting the UAV forward and backward within a ±5° range whi le maintaining a fixed heading. This motion 

primarily affects the induced magnetic field, which arises from the magnetization of the UAV’s ferromagnetic 

components in response to the geomagnetic field. The induced field varies with changes in UAV orientation, 

making pitch oscillation essential for characterizing and compensating for these variations. (2) Yaw oscillation 

maneuvers were conducted by rotating the UAV left and right around its vertical axis with a yaw range of ±10°. 

This maneuver primarily impacts the eddy current magnetic field, which is generated when conductive materials 

within the UAV interact with the geomagnetic field as the aircraft undergoes angular motion. Since eddy 

current effects are highly dependent on the rate of change of the UAV’s heading, these oscillations allow us to 

assess how well the compensation method adapts to such dynamic interference. (3) Roll oscillation maneuvers were 

executed by tilting the UAV sideways within ±5° range along its longitudinal axis. Unlike pitch and yaw, which 

predominantly influence the induced and eddy current fields, roll oscillations introduce a combination of constant 

and induced field variations. This is be- cause the residual magnetization of UAV components interacts with the 

changing attitude, leading to complex magnetic disturbances that require compensation. (4) In addition to these 

controlled maneuvers,  a level flight at a constant speed was performed as a baseline measurement. This condition 

provided an essential reference for assessing the overall interference levels and evaluating the compensation 

effectiveness under steady-state flight conditions. Each maneuver was performed along a rectangular flight path, 

covering the four cardinal directions (north, east, south, and west), as depicted in Figure 6. These maneuvers 

ensure that the dataset contains diverse motion-induced magnetic disturbances,  which are necessary for evaluating the 

robustness of the proposed compensation method. 

 
Figure 6. The UAV flight trajectory and maneuvers performed to obtain experimental data. 

 

2.5. Evaluation Indicators 

The most commonly used compensation performance evaluation indicators in the 

field of aeromagnetic compensation are standard deviation (STD) and improvement ratio (IR) [35,36], which are 

defined as follows: 

𝑆𝑇𝐷 = √
1

𝑛
∑(𝑥𝑖 − 𝑥)2

𝑛

𝑖=1

(34) 

𝐼𝑅 =
𝑆𝑇𝐷𝑢

𝑆𝑇𝐷𝑐

(35) 

  
In the formula, STDu represents the standard deviation of magnetic interference before compensation, while 

STDc denotes the standard deviation of residual magnetic interference after compensation, where 𝑥 represents the 

arithmetic mean of the interference field, 𝑥𝑖 represents the magnetic field interference value at the sampling point, 
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and n refers to the number of sampling points. A higher improvement ratio corresponds to a more effective  

compensation.  

 

3. Results 

3.1. Ablation experiments 

This experiment aimed to verify the effectiveness of the T-L model’s embedding loss function, which is 

represented by Equation (28). We adjusted the weight α of the physical model loss function, compared the 

compensation performance under different circum- stances, and determined the most suitable hyperparameter α . 

When α = 0, the physical model no longer constrained the loss function. As illustrated in Figure 7, incorporating 

the physical model constraint into the loss function enhanced the compensation performance. When the α value 

was either too small or too large, the loss function was predominantly influenced by the data or the physical 

model, leading to a larger standard deviation (STD) of the compensated data and a lower improvement ratio (IR). 

Through empirical analysis, we selected α = 1.2,  as it provides an optimal balance between physical constraint 

effects and the network’s ability to learn from data. Similarly, the hyperparameter β was chosen as 0.1 to ensure 

stable and effective compensation performance.

 

 
Figure 7. The influence of the physical model constraint weight α on the compensation effect. The optimal weight 

was found to be 1.2. 

 

3.2. Simulation Experiments 

To demonstrate the superiority of our method, we conducted comparative experiments to compensate the 

simulated aeromagnetic data using three techniques: the proposed method, model-driven methods, and data-

driven methods. The model-driven methods included LS and Ridge regression, while the data-driven methods 

consisted of BPNN and LSTM. In the data-driven methods, the input features included time t, direction cosines 

of the magnetic vector ui, and the measured magnetic field signals Ht. The magnetic interference, generated 

by the UAV during flight, was simulated using the Leliak flight  method described in Section2.4.2. In this 

simulation, the geomagnetic field intensity was set to 50,000 nT, with a magnetic inclination of 50° and a magnetic 

declination of -5°. Figures 8 and 9present the three components of the aeromagnetic data and the interference field 

obtained through simulation during the flight. 

The compensation results of the simulated data are shown in Figure 10 and Table 3. Figure 10 shows the 

effects of five different methods before and after the simulated maneuvering interference compensation. 

CEEMDAN decomposition, as an adaptive form of principal component analysis, effectively extracts more 

regular signal features, making it easier for the subsequent neural network to learn. Experimental results show 

that our proposed method achieved the best compensation performance. The results were as fol lows: The original 

interference had a standard deviation of 0.6998. The LS method reduced the standard deviation to 0.08, resulting in 

an IR of 8.7469. The Ridge regression method reduced the standard deviation to 0.077, with an IR of 9.0877. 

The BPNN reduced the standard deviation to 0.026, achieving an IR of 26.9136. The LSTM reduces the standard 

deviation to 0.022, yielding an IR of 31.807. The proposed CEEMDAN-PGNN method reduced the standard 

deviation to 0.02, with an IR of 34.9877. 
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These results demonstrate that the proposed method not only significantly reduces the magnetic interference, 

but also outperforms both traditional model-driven and modern data-driven approaches, especially in terms of 

achieving the highest improvement ratio and lowest residual interference. 

 
 

Figure 8. Simulation data of three components of the total magnetic field, as simulated by MATLAB, which were 

used as input for the least squares (LS),ridge regression (RR), BPNN, and long short-term memory neural network 

(LSTM) methods. 

 

 
Figure 9. Magnetic interference of the flight simulation (what needed compensation). 

 

Table 3. Detailed compensation results of the simulation data (the smaller the standa rd deviation (STD), the 

higher the improvement ratio (IR), and the better the compensation effect). 

 

Method STD IR 

Raw 0.6998 1 

LS 0.0800 8.7469 

Ridge 0.0770 9.0877 

BPNN 0.0260 26.9136 

LSTM 0.0220 31.8070 

CEEMDAN-PGNN  0.0200 34.9877 
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Figure 10. Compensation results of the simulation data. The residual disturbance in the magnetic field data before 

and after compensation is shown. Raw represents the original magnetic interference, LS represents the least squares 

algorithm, Ridge represents the ridge regression algorithm, BPNN represents the BP neural network, LSTM 

represents the long short-term memory neural network, and CEEMDAN-PGNN is the proposed method. 

 

3.3. Robustness Analysis about the Data Quality 

To evaluate the robustness of our proposed method under low data quality conditions, we introduced varying 

degrees of Gaussian noise and colored noise into the simulated aeromagnetic data. Gaussian noise was added to 

the data to simulate the random fluctuations that typically occur in real-world measurements (while colored noise 

mimics more structured disturbances that can arise from electronic equipment or environmental factors).  We tested 

the method by introducing noise levels ranging from low to high, adjusting the noise standard deviation to 

simulate different levels of data corruption. Figures 11and 12 shows the three-component data of the magnetic field 

with a signal-to-noise ratio of 15 dB and the corresponding interference field 

The compensation results under these noisy conditions are presented in Figures 13 and Table 4. The LS and 

ridge regression methods only achieved an IR of 5.8347 and 5.7156, while the BPNN and LSTM methods 

achieved an IR of 20.0045 and 23.3386. The CEEMDAN-PGNN method achieved the highest IR of 27.4572. 

Model-driven methods, particularly LS and ridge regression, were found to be highly susceptible to nonlinear noise. 

This is because these methods are fundamentally based on linear assumptions, which do not adequately account for 

the nonlinear disturbances introduced by noisy data. As a result, their compensation performance significantly 

degraded in the presence of both Gaussian and colored noise. Specifically, these methods struggle to effectively 

model the complex relationships between the magnetic interference and noisy data, leading to large residual errors. 

In contrast, data-driven methods like BPNN and LSTM perform better under noisy conditions, especially with 

nonlinear noise. These methods are more flexible due to their  ability to learn complex, nonlinear mappings from 

data. However, even data-driven models show a noticeable decline in performance as the noise level increases, 

particularly when the data quality becomes poor. The performance degradation is reflected in a higher standard 

deviation of the residual magnetic interference and a lower improvement ratio. 

Our proposed method, CEEMDAN-PGNN, combines the strengths of both model-driven and data-driven 

approaches, leading to superior performance in noisy environments. By first applying CEEMDAN to decompose the 

noisy signal into more distinct components, the network is better able to focus on the relevant features of the 

data while reducing the impact of noise. The PGNN further enhances the model’s ability to maintain stable 

compensation by incorporating physical constraints that guide the learning process, even in the presence of substantial 

noise. This hybrid approach reduces the sensitivity of the model to nonlinear interference and ensures consistent and 

accurate compensation performance across varying levels of data corruption. 
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Figure 11. The simulated data of the three components of a total magnetic field with noise. 

 

 
Figure 12. Simulated magnetic interference with noise. 

 

Table 4. Detailed compensation results of the added noise data. 

 

Method STD IR 

Raw 1.4003 1 

LS 0.2400 5.8347 

Ridge 0.2450 5.7156 

BPNN 0.0700 20.0045 

LSTM 0.0600 23.3386 

CEEMDAN-PGNN  0.0510 27.4572 

 

 

Figure 13. Compensation results of added noise data (from top to bottom, comparisons of the residual interference 

and the original interference of the magnetic field data after  compensation by the LS, Ridge, BPNN, LSTM and 

CEEMDAN-PGNN methods). 
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3.4. Robustness Analysis about the Data Quantity 

To demonstrate the effectiveness of our method under limited data, we trained the network using different 

amounts of simulation data. Figure 14 shows the compensation performance on a consistent test set. The vertical 

axis represents the standard deviation of the residuals after compensation, while the horizontal axis corresponds to 

the number of flights used to train the network. The number of flights was directly related to the size of the 

dataset, with fewer flights corresponding to smaller datasets. 

As expected, data-driven neural network methods (such as BPNN and LSTM) exhibit a clear dependency on 

the size of the dataset. With a smaller dataset, the performance of these methods deteriorates significantly as the 

network has fewer data to learn the com- plex relationships between the magnetic interference and the observed 

data. This results in higher residuals (larger STD) and lower compensation effectiveness.  In contrast, our 

proposed method, CEEMDAN-PGNN, demonstrated strong compensation performance and stability even when 

the training dataset was limited. Even with smaller datasets, the CEEMDAN step effectively decomposes the 

noisy magnetic signals into distinct components, enabling the PGNN to learn the most relevant features of the 

data. By combining physical constraints with data-driven learning, our method is less reliant on the volume of data 

and can still achieve high-quality compensation, maintaining low residuals and stable performance across different 

dataset sizes. 

This result highlights the robustness of the proposed method in scenarios with limited data, which is where 

traditional data-driven methods often fail. The ability of CEEMDAN-PGNN to maintain consistent compensation 

performance with smaller datasets makes it particularly suitable for real-world applications, where data 

acquisition maybe costly or time consuming. 

 

 
Figure 14. The compensation effect under different data quantities (the horizontal axis represents the amount of 

training set data, and the vertical axis represents the compensation resul ts on the unified test set). 

 

3.5. Real Flight Test 

To validate the effectiveness of the proposed method under real-world conditions, we conducted flight tests 

using the method and equipment described in Section 2.4.2. Figure 15 shows the original total magnetic field data Ht 

and its decomposed sequences. The original data collected during the flight was significantly affected by magnetic 

interference, making compensation essential for accurate interpretation. To further illustrate the performance, we 

have reported the IR and the STD of the residual magnetic field after compensation. Our method achieved the 

highest improvement ratio, significantly reducing the residual interference when compared to traditional methods. 

The compensation results are presented in Figure 16 and Table 5. In the actual flight data, the proposed method 

achieved significant improvements, reducing the magnetic interference amplitude in the original data from 6 nT 

to 0.1 nT. This result demonstrates the effectiveness of the proposed method in real- world conditions and 

highlights its strong potential for practical application. These results confirm that the CEEMDAN-PGNN method 

not only provides precise compensation for simulated data, but it also performs robustly in real-world flight 

tests, where data quality and interference are often more complex. 
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Figure 15. The decomposition results of the original signal Ht by CEEMDAN, where Ht is the actual measured 

data with interference. 

 

 

Table 5. Detailed compensation results of real flight data. 

Method STD IR 

Raw 1.7512 1 

LS 0.3438 5.0940 

Ridge 0.3452 5.0733 

BPNN 0.1794 9.7631 

LSTM 0.1384 12.6556 

CEEMDAN-PGNN  0.1000 17.5119 

 

Results from both the simulated and real flight data experiments show that the pro- posed CEEMDAN-PGNN 

approach outperformed both model-driven and data-driven approaches. The main reasons for this are the following: (1) 

Effective signal decomposition was achieved using CEEMDAN as it is particularly good at handling complex nonlinear 

disturbances that often occur in aeromagnetic measurements. Traditional model-driven approaches such as LS and ridge 

regression rely on linear models that have difficulty.
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Figure 16. Real flight data compensation results (from top to bottom, the comparison between the residual 

interference and the original interference of the magnetic field data after compensation by the LS, Ridge, BPNN, 

LSTM and CEEMDAN-PGNN methods). 

accounting for the nonlinear nature of disturbances, especially when flight conditions are variable. On the 

other hand, CEEMDAN decomposes the signal into different intrinsic mode functions, which allows for a 

more accurate decomposition of disturbance components, making it easier for the neural network to learn and 

compensate for these disturbances. (2) PGNN helped to alleviate the overfitting problem that is common in purely  

data-driven approaches by integrating the physical model of aeromagnetic disturbances into the neural network. 

Unlike BPNN and LSTM, which rely entirely on large datasets for learning, PGNN benefits from physical 

constraints that guide the network to find solutions consistent with the underlying physical processes. This is 

particularly advantageous when the dataset is limited or noisy, as demonstrated by the robustness of our approach 

under conditions of low data quality and quantity.  (3) Both model and data-driven methods tended to lose 

accuracy as the noise increased, but CEEMDAN-PGNN remained stable due to its combination of the decomposition 

method and physical constraints, which helps filter out noise and focus on the real signal. 

 

4. Discussion 

The proposed method advances the state of the art in aeromagnetic compensation by combining data-driven 

learning with physical modeling. Existing methods, such as the Tolles–Lawson model and various regression-

based techniques, focus primarily on linear assumptions and often require well-controlled flight paths to be 

effective. However, these methods have limited applicability when dealing with  nonlinear disturbances or 

when there is insufficient high-quality data. Recent approaches, including those based on BPNN and LSTM, 

show improvements in handling nonlinear data, but they still face challenges in generalization when data are 

noisy or scarce. Our method, by leveraging CEEMDAN’s feature decomposition and PGNN’s physical guidance, 

represents a significant improvement over purely data-driven or purely model-driven approaches. It bridges the 

gap between traditional methods and modern machine learning techniques, providing a more flexible, robust, and 

interpretable solution to aeromagnetic compensation. While the CEEMDAN-PGNN method shows clear 

advantages, it is not without limitations: (1) CEEMDAN demonstrates computational complexity as the use of 

CEEMDAN for signal decomposition adds computational overhead, especially when processing large datasets. (2) 

There is a dependence on hyperparameter tuning as, even though the integration of physical constraints through 

the PGNN improves the network’s robustness, the effective- ness of the method still depends on the careful 

selection of hyperparameters, such as the weight coefficients for the physical loss function (α and β). (3) There are 

challenges with highly irregular interference as, in certain complex environments, such as those with severe 
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electromagnetic interference from nearby electronic equipment or geomagnetic anomalies, the performance of 

CEEMDAN-PGNN maybe limited. The model assumes that the magnetic interference is primarily generated by 

the aircraft, and, while it performs well under most conditions, it may struggle to handle extremely irregular 

interference that cannot be effectively decomposed by CEEMDAN. In future work, we will try the following 

improvements: (1) Real-time applications, future work could focus on optimizing the computational efficiency of 

CEEMDAN to enable real-time compensation, particularly for UAVs or autonomous systems operating in 

dynamic environments. (2) Generalization to complex environments could be conducted to further enhance the 

method’s robustness, and future studies could explore its performance in more diverse and challenging 

environments,  such as urban areas with high levels of electromagnetic interference or regions with significant 

geomagnetic anomalies. (3) Integration with other sensor modalities could be attempted as another promising 

direction is the fusion of aeromagnetic data with other  sensor modalities [37]. This would allow for a more 

comprehensive understanding of the environment and enable more accurate detection and mapping of geological 

features or anomalies. 

 

5. Conclusions 

In this study, we demonstrated the effectiveness of the proposed compensation method under various conditions, 

including simulated, noisy, and real flight data.  CEEMDAN- based decomposition would enhance the network’s 

ability to handle complex interference, and integrating physical knowledge via PGNN would improve model 

stability and generalization in noisy environments. Our experiments confirm that CEEMDAN-PGNN 

outperforms traditional model-driven and data-driven methods in terms of compensation performance and 

robustness. Under simulated conditions, the proposed method reduced the interference in the original data from a 

standard deviation of 0.6998 nT to 0.02 nT, thus achieving an improvement ratio of 34.9877.  When Gaussian and 

colored noise were introduced, the CEEMDAN-PGNN method consistently maintained a low residual error,  

whereas traditional methods such as LS and ridge regression exhibited significant performance degradation. In 

real flight tests, the compensation method reduced the magnetic interference amplitude from 6 nT to 0.1 nT, 

demonstrating its practical applicability. The improvement ratio achieved in actual flight data further underscores 

the method’s strong potential for real-world use, where data quality can vary. 
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