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Abstract:

This research examines the dependability performance of a butter oil production facility by using the Laplace Transform and the
Fourth-Order Runge-Kutta (RK4) technique to estimate system failure rates and enhance maintenance schedules. The
manufacturing process of butter oil encompasses many phases, including pasteurization, centrifugation, and evaporation, all of
which are vulnerable to mechanical and thermal failures. By establishing differential equations that depict failure rates and
resolving them using Laplace Transform and RK4, we get reliability measures like Mean Time Between Failures (MTBF) and
system availability. The findings indicate enhanced predictive maintenance procedures, minimizing downtime and improving
operational efficiency.

Keywords: Manufacturing of butter oil, reliability engineering, Laplace transform, Runge-Kutta technique, differential
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Introduction:

In reliability engineering, butter oil denotes a concentrated dairy fat product (usually 99-100% milk fat) whose manufacturing
system is examined for dependability, failure modes, and maintenance optimization. In contrast to conventional mechanical
methods, the manufacturing of butter oil entails:

1. Thermal Processes (pasteurization, evaporation)
2. Mechanical Separation (centrifugation, clarification)
3. Packaging Systems (sterilization, filling)

Key Reliability Parameters for Butter Oil Systems:

Parameter Significance in Butter Oil Production

Failure Rate (A) Higher in heating elements (scaling/burnout)

. Slower for centrifuges (precision alignment
Repair Rate (1) ges (p g

needed)
MTBF Shorter in high-temperature zones
Availability Often limited by cleaning/sanitization downtime

The dependability of butter oil manufacturing facilities is essential for maintaining continuous output and reducing financial
losses from equipment malfunctions (Kumar & Klefsjd, 1994). These facilities have many interdependent components—such as
pasteurization, centrifugation, and evaporation systems—each susceptible to mechanical and thermal malfunctions.
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Conventional reliability analysis techniques, like Weibull distribution and Markov chains, often exhibit deficiencies in dynamic
modeling for time-dependent failure rates (Dhillon, 2006).

This work utilizes the Laplace Transform for steady-state reliability evaluation and the Fourth-Order Runge-Kutta (RK4)
technique for transient failure analysis to overcome this constraint. The Laplace Transform streamlines differential equations
related to failure rates, but RK4 delivers precise numerical solutions for intricate, time-dependent reliability functions (Butcher,
2008). This study seeks to integrate these strategies to:

1. Formulate a mathematical model for predicting failures in butter oil manufacturing facilities.
2. Refine maintenance programs to improve Mean Time Between Failures (MTBF).
3. Enhance system availability via data-driven reliability assessment. The results enhance predictive maintenance

procedures in dairy production, minimizing downtime and operating expenses.
Butter oil, a clarified variant of butter fat, is essential in the dairy processing sector owing to its superior shelf stability and high
concentration of milk fat. The production process encompasses a series of mechanical and thermal subsystems, including milk
separation, cream heating, churning, and oil extraction. These systems are susceptible to failures that may substantially impact
productivity and product quality. Consequently, evaluating and enhancing the dependability of such a facility is crucial for
operational excellence and economic sustainability (Kumar & Singh, 2007).
Reliability engineering offers mathematical instruments to describe and assess the performance and failure characteristics of
these systems. The Laplace Transform is a proficient method for resolving linear ordinary differential equations related to
constant failure rates in dependability models (Trivedi, 2001). In actual industrial settings, when systems display non-linear
dynamics or time-varying failure rates, obtaining analytical solutions is difficult. In certain instances, numerical techniques such
as the Fourth-Order Runge-Kutta (RK4) approach are effective for deriving approximation solutions with elevated precision
(Chapra & Canale, 2015).
Several research conducted in recent years have revealed that reliability engineering is becoming more important in food
processing systems. Kumar and Sharma (2021) introduced Markov models to dairy processing equipment and shown that the
accuracy of failure prediction was improved by 15% when compared to the accuracy of failure prediction using standard
statistical approaches. According to the results of their study, basic methodologies for dependability analysis in temperature-
sensitive food processing were devised.
According to Patel et al. (2020), who successfully utilized the Laplace transform for stability analysis in milk pasteurization
systems, the Laplace transform has been extensively employed in reliability studies. This is indicated by the presence of the
Laplace transform. The findings of their study suggested that there was a significant connection between transform-based
forecasts and the actual performance of the equipment (R? = 0.92).
When it comes to complicated food systems, numerical approaches have shown a great deal of potential. Zhang and Chen (2019)
conducted a comprehensive analysis of multiple Runge-Kutta implementations for the purpose of solving differential equations
in the food processing industry. They found that the fourth-order technique exhibited higher accuracy (error < 0.5%) when
applied to nonlinear systems. This conclusion lends credence to the scientific approach that we have chosen for the product
analysis of butter oil.
Research Objectives:
The main aim of this research is to improve the dependability and operational efficiency of a butter oil production facility via
the use of sophisticated mathematical modeling methods. The study specifically intends to:

1. Reliability of Model Systems:
Formulate a mathematical model using differential equations to depict the failure rates of essential components (pasteurization,
centrifugation, and evaporation units) in a butter oil production facility.

2. Use the Laplace Transform to Analyze Steady States:
The reliability differential equations may be analytically solved using the Laplace Transform to provide steady-state system
performance indicators like availability and Mean Time Between Failures (MTBF).

3. Apply Runge-Kutta Fourth Order (RK4) to Transient Analysis:

Employ the RK4 numerical approach to resolve time-dependent reliability equations, encapsulating dynamic failure behaviors
and forecasting short-term system performance under fluctuating operating circumstances.

4, Enhance Maintenance Approaches:
Determine ideal maintenance schedules informed by reliability forecasts to save downtime, lower repair costs, and prolong
equipment longevity.
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5. Authenticate the Model with Empirical Data:

Evaluate the theoretical predictions against the actual failure and maintenance data from a butter oil production facility to
determine the precision and relevance of the proposed model.

6. Enhance Comprehensive Plant Efficiency:
Deliver pragmatic insights for plant managers to optimize production continuity, minimize waste, and promote cost-efficiency
using data-driven reliability engineering.

Methodology:

System Modeling:

The butter oil manufacturing system is represented as a collection of interlinked components, each with distinct failure rates ()
and repair rates (). The probabilities of the system's states are articulated by a series of differential equations:

ari(t)_
= Xj=1ai; Py(t)
Where Pi(t) represents the probability of being in state i at time t, and aij denotes transition rates between states.

Laplace Transform Application:

The Laplace transform is applied to convert the differential equations into the s-domain:

L{*=%} = sP(s) -P(0)
This transformation facilitates algebraic manipulation to determine dependability measures, including Mean Time Between
Failures (MTBF) and steady-state availability.

Numerical Solution via RK4 Method:

The RK4 technique is used to numerically solve differential equations with nonlinear or time-dependent failure rates. The RK4
method repeatedly calculates the state probabilities.

ki = h f(t, Pr)

Kz = h f( to+ h/2,Py+ka/2)

ks = h f(ty+ h/2,Py+ke/2)

Ke = h f( ta+ h/2,Py+ks)
Pn+1=Pn+1/6(K12Ko+2Ks+Ks),

aprwNPE

Numerical Problem:
A butter oil production facility consists of three critical components in series:
1. Pasteurizer
Failure rate, A;= 0.02 hr and repair rate u, = 0.01hr*
2. Separator
Failure rate, A,= 0.015hr* and repair rate u, = 0.12hr
3. Clarifier

Failure rate, A;= 0.01hr? and repair rate 5 = 0.15hr?

The system fails if any one component fails. We need to:
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1. Model the system reliability using differential equations.

2. Apply the Laplace Transform to find the steady-state availability.

3. Solve the system dynamics numerically using the RK4 method over t=0 to 10 hours with a step size h=0.5
Solution:

Step 1: System Reliability Modeling
The system can be in two states:

State 0 (Operational): All components are working.

State 1 (Failed): At least one component has failed.

The transition rates are:

Failure rate (X) = A+h+23=0.02+0.015+0.01=0.045 hr*

Repair rate (i) = Average repair rate = (u+uo+us )/ 3=0.123 hr?
The state probabilities are governed by:

ol = —APo(t) + 1 Pa(t)

dPy(t) _
dt

APy(t) - p Pa(t)
Step 2: Laplace Transform for Steady-State Availability

Taking Laplace transforms:

S Po(S) — Po(0) = —AP,(S) + u P1(s)

s P1(s) — P1(0) = APy(s) - u P1(s)

Assuming initial conditions Po(0) =1 (fully operational) and P1(0)=0, we solve for steady-state (s—0):
—APy(s) + uP1(s)=0

APy(S) - u Pa(s) =0

Since Po+P1=1, the steady-state availability is:

Asteady = PO
_ k.
b rmie 0.732

Step 3: RK4 Numerical Solution:

We solve the differential equations numerically using RK4 for t=0 to 10 hrs, h=0.5.

Vol: 2023 |Iss: 12|2023| © 2023 Fuel Cells Bulletin



Fuel Cells Bulletin
ISSN: 1464-2859

Given:

2B = _0,045P,(t) + 0.123 Py(t) = f(t,Po,P1)

dt

dPy(t) _
dt

0.045Py(t) - 0.123 P1(t) = g(t,Po,P1)
With initial conditions Po(0) = 1 and P1(0) = 0.
k1o = h. (0,1,0) = - 0.0225

ki1 = h. g(0,1,0) = 0.0225

Similarly, we can find

ka"o ~ -0.021555

k2”1 ~0.0216

ksPo~ -0.0216

ks"1~ 0.0216

k4Po~ -0.0207

ksF1 ~ 0.0207

Po(0.5) = ~0.978

P;(0.5) ~ 0.022

Continuing this process up to t=10, we generate the following table:

Time (hr) | Po(t) (Operational) | Pi(t) (Failed)
0.0 1.000 0.000
0.5 0.978 0.022
1.0 0.957 0.043
2.0 0.915 0.085
5.0 0.810 0.190
10.0 0.735 0.265

According to the findings, the system achieves a level of stability that is consistent with the steady-state availability (73.2%), as
anticipated by the Laplace transform.

Conclusion:

Finally, the research shown that sophisticated mathematical methods may be used to assess the dependability of butter oil
manufacturing processes. The steady-state system availability was found to be 73.2% using the Laplace transform, and the time-
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dependent behavior of the system dependability was better understood with the help of the Fourth-Order Runge-Kutta technique.
The results show that component failure rates and repair efficiencies are highly dependent on each other, indicating that total
system dependability might be greatly improved with targeted enhancements to maintenance practices. In order to maximize
operational dependability and minimize output losses, these findings provide dairy processing facilities a mathematical
foundation. This technique, which combines analytical and numerical approaches, is robust enough to be applied to other food
processing systems facing comparable dependability issues. Predictive maintenance in industrial settings might benefit from
more investigation into the combination of real-time monitoring and machine learning.
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