
Fuel Cells Bulletin
ISSN: 1464-2859

238 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

A Hybrid Parallel Techniques for Large-Scale Text Classification with Symmetric

ADMM and 1-Factorization

Vijayakumar H. Bhajantri1*, Shashikumar G. Totad1, 2, Geeta R. Bharamagoudar3

1School of Computer Science and Engineering KLE Technological University, Hubballi, India.
2Department of Computer Science and Engineering, TKIET, Warananagar, India.

3Department of Computer Science and Engineering, KLE Institute of Technology, Hubballi, India.

*Corresponding Email: Vijayakumar H. Bhajantri

Abstract

Distributed computing has become essential for handling large-scale datasets in machine learning. This study

focuses on the implementation of two prominent multiclass Support Vector Machine (SVM) algorithms—

Crammer and Singer (CS) and Weston and Watkins (WW)—in a distributed computing environment using

symmetric Alternating Direction Method of Multipliers (ADMM). Designed for multiclass classification, these

algorithms extend traditional binary SVMs by optimizing a single objective function that captures all class

relationships simultaneously. These algorithms are adapted to leverage the computational power of multi-node

clusters, ensuring scalability and efficiency. Symmetric ADMM is employed to decompose the optimization

problem across multiple nodes, enabling parallel processing and efficient convergence for large datasets. The

implementation distributes the optimization problem across a multi-node cluster, enabling parallel computation for

handling large-scale dataset LSHTC. Each node processes a subset of the data, and symmetric ADMM ensures

coordination and convergence by exchanging updates between nodes in a balanced manner. The optimization

leverages polynomial kernels to handle non-linear separability effectively. The distributed framework reduces

computational overhead and memory constraints compared to traditional single-node methods, achieving efficient

scaling with the number of nodes. Results from the implementation highlight improved training times and robust

classification accuracy, demonstrating the effectiveness of symmetric ADMM in balancing workload and

accelerating convergence. This implementation serves as a scalable solution for high-dimensional datasets in

resource-intensive environments.

Keywords: Machine Learning, Support Vector Machine, Alternate Direction Method of Multipliers, Symmetric,

Crammer and Singer, Weston and Watkins, Multiclass Classification, Large Scale Dataset, LSHTC, and

Distributed Computing.

1. Introduction

The explosive growth of data in modern applications has driven the need for scalable and efficient machine learning algorithms.

Among these, multiclass Support Vector Machines (SVMs) have proven to be particularly effective for classification tasks,

owing to their strong theoretical foundations and capability to handle high-dimensional data. The Crammer-Singer (Crammer et

al., 2001) [27] and Weston-Watkins (Weston, J., & Watkins, C, 1999) [7] multiclass SVM algorithms are two widely used

approaches for addressing multiclass problems. Both methods aim to directly optimize classification boundaries for multiple

classes simultaneously, rather than decomposing the problem into multiple binary classification tasks. However, their application

to large-scale datasets remains a significant challenge due to computational complexity [1] and memory constraints.

Multiclass classification involves assigning a single label from a predefined set of categories to each input. Traditional

approaches often decompose multiclass problems into binary classification tasks [7] [27], such as one-vs-rest or one-vs-one

strategies. While effective for smaller datasets, these methods introduce redundancies and inefficiencies when scaling to larger

datasets. The Crammer-Singer algorithm, introduced in 2001, formulates the multiclass SVM problem as a single optimization

task, ensuring global margins between classes. Similarly, the Weston-Watkins algorithm, proposed in 1999, offers a margin-

based approach that optimizes decision boundaries across all classes in a unified framework. Both algorithms provide elegant

solutions for multiclass problems but face significant computational challenges when applied to datasets with millions of samples

or high-dimensional features.

Support Vector Machines (SVMs) Hsu, C. W., Chang, C. et al., 2013[16] have been widely adopted for binary classification

problems due to their robustness and effectiveness in handling high-dimensional data. Extending SVMs to multiclass

classification, however, is non-trivial. Two prominent approaches for multiclass SVMs are:

Fuel Cells Bulletin
ISSN: 1464-2859

239 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

1. One-vs-Rest (OvR): Decomposes the problem into multiple binary classification tasks [5], each separating one class

from the rest.

2. All-in-One (or All-vs-All): Optimizes a single objective function to classify all classes simultaneously.

The Weston-Watkins and Crammer-Singer formulation falls under the All-in-One approach, where a unified objective function

ensures simultaneous optimization of all classes. This model avoids the inconsistencies often seen in OvR (Wang, Y., & Zhou,

X. 2015) [5], making it suitable for complex, large-scale datasets.

Distributed computing has emerged as a transformative solution to the scalability issues associated with large-scale datasets. By

leveraging parallelism across multiple computational nodes [19], distributed frameworks such as Apache Spark, TensorFlow,

and PyTorch enable efficient execution of machine learning algorithms. According to Geeta R. B and Totad S. G [4] for SVMs,

distributed computing allows the partitioning of data and computational tasks, reducing memory bottlenecks and speeding up

the optimization process. These frameworks also provide tools for handling data that exceed the capacity of a single machine,

facilitating scalability and fault tolerance.

Despite the advantages of distributed computing, implementing multiclass SVMs in distributed environments introduces

additional complexities. Communication overhead, synchronization, and fault tolerance are key challenges that must be

addressed to achieve efficient distributed execution. Optimization techniques [18] also need to be adapted for distributed systems

to ensure convergence and performance [24]. The Alternating Direction Method of Multipliers (ADMM) [1] has gained

prominence as an effective optimization method for distributed machine learning. ADMM decomposes global optimization

problems into smaller sub-problems that can be solved independently on distributed nodes. This iterative approach allows for

parallel computation while maintaining coordination across nodes to ensure global convergence.

The Symmetric ADMM approach, Yang, L et al., 2019 [29] showed a variant of the traditional ADMM, is particularly suited for

distributed implementations of multiclass SVMs. By enforcing symmetry in the updates of dual variables across computational

nodes, Symmetric ADMM ensures balanced convergence and minimizes bottlenecks caused by heterogeneous workloads. This

property is especially advantageous for training large-scale multiclass SVMs, where data and computational resources are

distributed across multiple nodes. Integrating Symmetric ADMM with the Crammer-Singer and Weston-Watkins algorithms

provides a robust framework for addressing the challenges of multiclass classification in large-scale settings.

Applications of multiclass SVMs in large-scale settings span diverse fields. For instance, in image classification, datasets such

as LSHTC, ImageNet and CIFAR-10 consist of millions of labeled samples distributed across hundreds or thousands of

categories. In NLP, tasks like text categorization and sentiment analysis involve processing large corpora of textual data with

diverse labels [2]. Similarly, in bioinformatics, genomic data often include thousands of features and labels, requiring efficient

classification algorithms. These applications highlight the need for scalable solutions that can handle the dual challenges of large

data volumes and high feature dimensionality.

Despite their potential, the distributed implementation of multiclass SVMs using Symmetric ADMM presents several practical

challenges. Communication overhead [2] [24] between nodes must be minimized to ensure that the computational gains from

parallelism are not negated by synchronization delays. Additionally, distributed systems must be resilient to faults, ensuring that

node failures do not compromise the overall optimization process. Effective hyper-parameter tuning is also critical, as it directly

impacts the convergence speed and classification performance of the algorithms [26]. Addressing these challenges is essential

for realizing the full potential of distributed multiclass SVMs in real-world scenarios.

Existing literature provides a strong foundation for this study. The Crammer-Singer and Weston-Watkins algorithms [7] [27]

have been extensively analyzed for their effectiveness in multiclass classification. Weston and Watkins (1999) demonstrated the

advantages of their unified margin-based approach, while Crammer and Singer (2001) introduced a globally consistent

optimization framework for multiclass problems. Boyd et al. (2011) [1] formalized the ADMM optimization technique,

showcasing its applicability to distributed systems. Subsequent research has explored the use of distributed ADMM for SVM

training, highlighting its scalability and efficiency. However, the specific integration of Symmetric ADMM with the Crammer-

Singer and Weston-Watkins algorithms in distributed settings remains an area with significant research potential.

This study aims to address this gap by developing a distributed implementation of the Crammer-Singer and Weston-Watkins

multiclass SVM algorithms using the Symmetric ADMM approach. The primary objectives of the research are as follows:

1. To design scalable implementations of the Crammer-Singer and Weston-Watkins multiclass SVM algorithms using

distributed computing frameworks.

2. To adapt the Symmetric ADMM optimization technique to the requirements of multiclass SVMs, ensuring balanced

convergence and reduced communication overhead.

Fuel Cells Bulletin
ISSN: 1464-2859

240 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

3. To evaluate the performance of the proposed approach on large-scale datasets from diverse application domains, such

as LSHTC.

4. To identify and address practical challenges in implementing the proposed framework, such as computational

complexity, scalability, fault tolerance, resource allocation, and hyper-parameter tuning.

By achieving these objectives, this research aims to contribute to the growing body of knowledge on scalable machine learning

algorithms for large-scale datasets. The findings of this study are expected to enhance the applicability of multiclass SVMs across

various domains, providing insights into the integration of distributed computing and advanced optimization techniques.

The remaining sections of this paper is organized as follows: The section 2 covers the significance of parallelization of Support

Vector Machine, distributed Support Vector Machine and standard ADMM. Section 3 covers the details of the proposed work

Symmetric ADMM and distributed SVM and its mathematical model. Section 4 is the experimental evaluation that includes

result discussion and Section 5 is the conclusion of the proposed work.

2. Literature Review

The scalability and efficiency of machine learning algorithms have become paramount with the increasing size and complexity

of datasets in various domains as we discussed in our paper [27]. Multiclass Support Vector Machines (SVMs) play a significant

role in classification tasks [12] [15], particularly due to their robust mathematical foundations and capacity to handle high-

dimensional data. Among the multiclass SVM formulations, the Crammer-Singer and Weston-Watkins algorithms have been

widely studied for their ability to address multiclass problems directly [7] [27] without relying on problem decomposition

strategies such as one-vs-one or one-vs-rest. This section provides a comprehensive review of literature focusing on distributed

computing frameworks, the Crammer-Singer and Weston-Watkins multiclass SVM algorithms, and the application of the

Alternating Direction Method of Multipliers (ADMM), particularly its symmetric variant, to large-scale machine learning

problems. The Smart Behavioral Driven Power Stasher is an advanced data storage and retrieval framework that dynamically

adapts to user behavior and optimizes energy efficiency for seamless data management [6]. The cloud service provider helps in

modeling management and allocation of various resources of cloud based on the customers’ demand [14].

2.1 Multiclass SVMs: All-In-One Approach

Crammer and Singer (2001) introduced a multiclass SVM formulation that optimizes a single global objective to ensure margin

separation among all classes [5]. This approach eliminates the redundancy and inefficiencies associated with binary

decomposition methods. Similarly, Weston and Watkins (1999) [7] proposed a margin-based optimization technique that aligns

well with the needs of multiclass classification. Both algorithms are recognized for their theoretical strengths but face

computational challenges when applied to large datasets with numerous classes and features. Studies have emphasized that while

these methods offer a unified framework [5] for multiclass classification, their implementation on large-scale datasets requires

significant computational resources, particularly during training.

Given a dataset {(𝑥𝑖 , 𝑦𝑖)}𝑖=1,
𝑛 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ 𝑅𝑑𝑖𝑠 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑦𝑖 ∈ {1,2, , 𝐾} is the class label, and 𝐾 is the number of

classes, the objective function of Weston-Watkins multiclass SVM formulation is:

min
𝑤

1

2
 ‖𝑊‖𝐹

2 + 𝐶 ∑ ∑ max (0,1 − 𝑤𝑦𝑖
𝑇 𝑥𝑖 + 𝑤𝑘

𝑇𝑥𝑖)

𝑘≠𝑦𝑖

𝑛

𝑖=1

… … … . . . (1)

Here: 𝑊 ∈ 𝑅𝐾𝑥𝑑: 𝐴 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤ℎ𝑒𝑟𝑒 𝑒𝑎𝑐ℎ 𝑟𝑜𝑤 𝑤𝑘𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑘. 𝑊𝐹
2 𝑖𝑠 𝑡ℎ𝑒 Frobenius norm of the

regularization. 𝐶 > 0 is the regularization parameter. The loss term sums the hinge losses for all incorrect classes 𝑘 ≠ 𝑦𝑖 .
The reformulated constraints introducing slack variables 𝜉𝑖,𝑘for all 𝑖 𝑎𝑛𝑑 𝑘 ≠ 𝑦𝑖

min
𝑤,𝜉

1

2
 ‖𝑤‖𝐹

2 + 𝐶 ∑ ∑ 𝜉𝑖,𝑘

𝑘≠𝑦𝑖

𝑛

𝑖=1

 … … (2)

subject to:

 𝑤𝑦𝑖
𝑇 𝑥𝑖 − 𝑤𝑘

𝑇𝑥𝑖 ≥ 1 − 𝜉𝑖,𝑘, 𝜉𝑖,𝑘 ≥ 0, ∀𝑖 ∀𝑘 ≠ 𝑦𝑖 ,

The objective function of Crammer-Singer multiclass SVM formulation is:

min
𝑤

1

2
∑‖𝑊𝑘‖2 + 𝐶 ∑ max

𝑗≠𝑦𝑖

(1 + 𝑊𝑗
𝑇𝑥𝑖 − 𝑊𝑦𝑖

𝑇𝑥𝑖)

𝑛

𝑖=1

𝐾

𝑘=1

… … … . . . (3)

With reformulated constraints

min
𝑤

1

2
‖𝑊‖𝐹

2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

 … … … … … … … … … … … … . . (4)

Fuel Cells Bulletin
ISSN: 1464-2859

241 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

subject to

𝑤𝑦𝑖
𝑇 𝑥𝑖 − 𝑤𝑘

𝑇𝑥𝑖 ≥ 1 − 𝜉𝑖 , ∀𝑘 ≠ 𝑦𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, , 𝑛

Here: 𝑊 ∈ 𝑅𝐾𝑥𝑑: 𝐴 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤ℎ𝑒𝑟𝑒 𝑒𝑎𝑐ℎ 𝑟𝑜𝑤 𝑤𝑘𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑘, 𝜉𝑖 𝑖𝑠 the slack variables for

misclassification.𝐶 > 0 is the regularization parameter. 𝑊𝐹
2 𝑖𝑠 𝑡ℎ𝑒 Frobenius norm of the regularization.

2.2 Challenges in Large-Scale Multiclass SVMs

The application of multiclass SVMs to large-scale datasets has highlighted several computational bottlenecks. First, the memory

requirements for storing kernel matrices and intermediate variables grow quadratically with the number of data points, making

the algorithms unsuitable for large datasets without modification (Cai, J et al.,2012) [13]. Second, the optimization process for

multiclass SVMs involves solving complex quadratic programming problems [11], which become increasingly expensive as the

size of the dataset increases. Finally, multiclass SVMs require careful tuning of hyper-parameters [26] such as regularization

parameters and kernel functions, further complicating their application to large-scale problems.

To address these challenges, researchers have explored various approaches, including parallel computing and data partitioning.

For instance, Chang and Lin (2011) [10] introduced LIBSVM, an efficient library for SVM training that incorporates problem

decomposition techniques to handle larger datasets [3]. While effective for binary classification tasks, these techniques often fall

short in multiclass settings, where the optimization problem's complexity increases exponentially with the number of classes.

2.3 Distributed Computing Frameworks

Distributed computing frameworks have emerged as a transformative solution to the scalability issues faced by traditional

machine learning algorithms. By partitioning data and computational tasks across multiple nodes [23], distributed systems enable

parallel execution of machine learning algorithms, reducing computation time and overcoming memory constraints. Frameworks

such as Apache Spark [3], Hadoop, and TensorFlow have been widely adopted for their ability to handle massive datasets and

provide fault-tolerant mechanisms.

Research has demonstrated the potential of distributed computing for SVM training. Zaharia et al. (2012) [8 - 9] introduced

Resilient Distributed Datasets (RDDs), a fault-tolerant abstraction for in-memory cluster computing, which has been leveraged

in distributed SVM implementations. Distributed computing has also facilitated the processing of streaming data and real-time

classification tasks, further extending the applicability of SVMs to dynamic environments. However, the integration of

distributed frameworks with multiclass SVMs remains challenging, primarily due to the complexity of global optimization tasks

and the need for synchronization across nodes.

2.4 Symmetric ADMM for Multiclass SVMs

Symmetric ADMM, a variant of traditional ADMM, introduces symmetry in the update rules for dual variables across distributed

nodes. This symmetry ensures balanced convergence and reduces bottlenecks caused by heterogeneous workloads, making it

particularly suited for multiclass SVM training [29] [26]. By enforcing uniform updates across nodes, Symmetric ADMM

minimizes communication overhead and improves the scalability of distributed implementations. Recent studies have highlighted

the potential of Symmetric ADMM for large-scale machine learning tasks [17]. For example, experiments on distributed

implementations of logistic regression and binary SVMs have demonstrated significant improvements in training efficiency and

model performance. However, the application of Symmetric ADMM to multiclass SVMs, particularly the Crammer-Singer and

Weston-Watkins algorithms, remains underexplored. Addressing this gap requires a detailed investigation of how Symmetric

ADMM can be tailored to the unique requirements of multiclass classification.

ADMM decomposes the optimization problem into sub-problems that can be solved iteratively. The symmetric ADMM

formulation introduces auxiliary variables 𝑍 and Lagrange multipliers 𝜆 to handle constraints more effectively.

Introduce auxiliary variable 𝑍 = 𝑊 and rewrite the problem (2) and (4)

min
𝑤,𝑧

1

2
 ‖𝑊‖𝐹

2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

Subject to

𝑤𝑦𝑖
𝑇 𝑥𝑖 − 𝑧𝑘

𝑇𝑥𝑖 ≥ 1 − 𝜉𝑖 , ∀𝑘 ≠ 𝑦𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, , 𝑛, 𝑊 = 𝑍

The augmented lagrangian is:

 𝜁(𝑊, 𝑍, 𝜆) =
1

2
 ‖𝑊‖𝐹

2 + 𝐶 ∑ 𝜉𝑖
𝑛
𝑖=1 +

𝜌

2
 ‖𝑊 − 𝑍 + 𝜆

𝜌⁄ ‖
𝐹

2

Where 𝜌 > 0 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

Fuel Cells Bulletin
ISSN: 1464-2859

242 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

2.5 Applications of Distributed Multiclass SVMs

The integration of distributed computing with multiclass SVMs has far-reaching implications for various domains. In image

classification, large-scale datasets such as LSHTC [28], ImageNet and CIFAR-10 require efficient algorithms capable of

processing millions of labeled samples across multiple categories. Similarly, NLP applications such as text classification and

sentiment analysis involve processing massive corpora with diverse labels. In bioinformatics, genomic data analysis often

involves datasets with thousands of features and categories, necessitating scalable machine learning solutions [25]. Studies have

shown that distributed multiclass SVMs can achieve competitive performance in these domains, provided that the underlying

optimization framework is robust and efficient. For instance, distributed implementations of the Crammer-Singer and Weston-

Watkins algorithms have been evaluated on synthetic and real-world datasets, demonstrating their ability to handle large-scale

classification tasks [20-21] [28]. However, further research is needed to optimize these implementations for practical

applications, particularly in scenarios involving imbalanced datasets and high feature dimensionality.

3. Details of Proposed Work

The key components of the proposed work are: multiclass formulation, symmetric ADMM framework and distributed setup.

1. Multiclass SVM Formulations:

• Crammer-Singer: Aims to ensure that the score for the correct class is consistently higher than the scores for all

incorrect classes by a margin of 1. It uses a unified objective function for all classes, avoiding the redundancies of

One-vs-Rest approaches [5].

• Weston-Watkins: Penalizes all margin violations equally across incorrect classes, focusing on smoother decision

boundaries by optimizing a unified objective.

2. Symmetric ADMM Framework:

• Decomposes the global optimization problem into smaller, local problems for each computing node.

• Synchronizes computations through global weight updates and dual variable updates to achieve consensus across all

nodes.

Considering Local Node Problem: Each node 𝑛 solves the following optimization problem for its local dataset 𝐷𝑛

min
𝑊𝑛

1

2
‖𝑊𝑛‖2 + 𝐶 ∑ max

𝑗≠𝑦𝑖

(1 + 𝑊𝑗
𝑇𝑥𝑖 − 𝑊𝑦𝑖

𝑇𝑥𝑖) +
𝜌

2
‖𝑊𝑛 − 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑍𝑛‖

2

𝑖∈𝐷𝑛

Where 𝑊𝑛 is the local weight matrix and 𝑍𝑛is the dual variable.

Considering Global Problem: The global weight matrix 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 is updated as the average of all local weights and

dual variables:

 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑁
 ∑ (𝑊𝑛 + 𝑍𝑛)𝑁

𝑛=1

The dual variable update: The dual variables 𝑍𝑛 are updated to enforce consensus between the local and global

weights:

 𝑍𝑛 = 𝑍𝑛 + 𝑊𝑛 − 𝑊𝑔𝑙𝑜𝑏𝑎𝑙

Convergence Analysis: The convergence of the Symmetric ADMM is governed by the following residuals:

i. Primal Residual: Measures the difference between local and global weights:

𝑟𝑝𝑟𝑖𝑚𝑎𝑙 = ∑‖𝑊𝑛 − 𝑊𝑔𝑙𝑜𝑏𝑎𝑙‖

𝑁

𝑛=1

ii. Dual Residual: Measures the change in global weights between iterations:

𝑟𝑑𝑢𝑎𝑙 = 𝜌 ∑‖𝑊𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 − 𝑊𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 ‖

𝑁

𝑛=1

The algorithm stops when both residuals fall below predefined thresholds:

𝑟𝑝𝑟𝑖𝑚𝑎𝑙 <∈𝑝𝑟𝑖𝑚𝑎𝑙, 𝑟𝑑𝑢𝑎𝑙 <∈𝑑𝑢𝑎𝑙

3. Distributed Setup

• Dataset is partitioned across multiple nodes (e.g., MPI-2 for 2 nodes, MPI-4 for 4 nodes).

• Each node performs local computations independently, reducing computational overhead on a single machine.

Fuel Cells Bulletin
ISSN: 1464-2859

243 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

To efficiently train the All-in-One multiclass SVM classifier for the LSHTC dataset [28], the cluster architecture shown in Figure

3 is designed to balance computational workload and minimize communication overhead. Below is a detailed explanation of the

cluster setup and its integration with the model:

Each node acts as an independent compute unit responsible for handling a portion of the dataset and the computational workload.

The logical architecture organizes the workflow into data distribution, parallel computation, and result aggregation stages:

Data Distribution:

The dataset is partitioned into subsets (one for each node) using MPI’s MPI_Scatter function. Each subset contains a proportional

number of examples and features to ensure load balancing.

Local Computation of Each Node:

Each node uses multi-threading (OpenMP) [31] to parallelize tasks such as: training binary classifiers for 1-factorization,

computing local gradient updates [17] and threads share memory to avoid duplication of data and optimize performance. Task

Decomposition: Binary classifiers for a subset of the 𝐾𝑟 (complete graph with 𝑟 nodes) factorization are assigned to each node.

This reduces inter-node dependency, as most computations are local.

Global Communication and Synchronization:

Global Aggregation: Nodes communicate updates (e.g., dual variables or classifier weights) using MPI’s collective

communication functions like MPI_Allreduce and aggregation ensures consistency across nodes. Synchronization: After every

ADMM iteration, nodes synchronize to share updated global parameters.

Figure 1. Architecture of the model

Workflow in the Cluster:

1. Initialization:

• Each node loads its assigned subset of the dataset into memory.

• MPI initializes communication channels among the nodes.

2. Training Phase:

• Nodes independently compute local updates for their assigned binary classifiers using OpenMP.

• Intermediate results are aggregated across nodes periodically to update global variables.

3. Prediction Phase:

• Each node contributes predictions from its trained binary classifiers.

• Results are aggregated across nodes using MPI to generate final predictions.

Fuel Cells Bulletin
ISSN: 1464-2859

244 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

4. Evaluation:

• The test dataset is replicated across nodes, allowing independent evaluation.

• Accuracy and performance metrics are computed globally.

3.1 Symmetric ADMM

The symmetric variant ensures equal treatment of all nodes in distributed environments, reducing communication overhead and

improving convergence.

Algorithm 1: Symmetric ADMM

1. Initialization

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ← 𝑊(0), 𝑍(0), 𝜆(0) 𝑎𝑛𝑑 𝜌 > 0

2. Update W: Solve the regularized least squares sub-problem:

 𝑢𝑝𝑑𝑎𝑡𝑒 𝑊 ← 𝑊(𝑡+1) = 𝑎𝑟𝑔 min
𝑤

1

2
 ‖𝑊‖𝐹

2 +
𝜌

2
 ‖𝑊 − 𝑍(𝑡) + 𝜆(𝑡)/𝜌‖

𝐹

2

3. Update Z: Solve the constrained optimization sub-problem for Z:

 𝑢𝑝𝑑𝑎𝑡𝑒 𝑍 ← 𝑍(𝑡+1) = 𝑎𝑟𝑔 min
𝑧

𝜌

2
 ‖𝑊(𝑡+1) − 𝑍 + 𝜆(𝑡)/𝜌‖

𝐹

2

 subject to

 𝑤𝑦𝑖
𝑇 𝑥𝑖 − 𝑧𝑘

𝑇𝑥𝑖 ≥ 1 − 𝜉𝑖 , ∀𝑘 ≠ 𝑦𝑖 , 𝜉𝑖 ≥ 0

4. Dual variable update: Update Lagrange multipliers:

 𝜆(𝑡+1) = 𝜆(𝑡) + 𝜌(𝑊(𝑡+1) − 𝑍(𝑡+1))

5. Convergence Check: Check convergence criteria for primal and dual residuals:

‖𝑊(𝑡+1) − 𝑍(𝑡+1)‖
𝐹≤∈ ,

 ‖𝑍(𝑡+1) − 𝑍(𝑡)‖
𝐹≤∈

The Algorithm 1 steps are illustrated to understand local and global variables updates and finally setting and comparing the

convergence.

Distributed Algorithm

1-Factorization

Using 1-factorization in the All-in-One multiclass SVM classifier provides a structured way to decompose and parallelize the

training process [22], ensuring scalability and efficiency. This approach is particularly valuable for large datasets, where

computational resources and time constraints are critical considerations.

Figure 2. 1-Factorization

To better understand 1-factorization through a cricket match analogy referring the Figure 2, let’s consider a cricket tournament

with 𝑟 = 7 𝑡𝑒𝑎𝑚𝑠: {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺} each team needs to play against every other team exactly once, forming a round-robin

tournament.

In graph terms, this is represented by a complete graph 𝐾7, where:

• Nodes 𝑟 represent the teams {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺} and edges (Red) represent the matches between two teams. Since

there are 7 teams, in each round, one team does not play (“bye”).

Since 𝑟 is odd, every round consist of
𝑟−1

2
 matches, leaving one team on bye. There are 𝑟 rounds to ensure every team gets a

chance to play against all other teams.

Example: Round 1: 𝐴 𝑣𝑠 𝐵, 𝐶 𝑣𝑠 𝐷, 𝐸 𝑣𝑠 𝐺 (𝑇𝑒𝑎𝑚 𝐹 𝑖𝑠 𝑜𝑛 𝑏𝑦𝑒) … … so on Round 7.

Fuel Cells Bulletin
ISSN: 1464-2859

245 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

How it works in Multiclass SVM.

1. Pairwise Decomposition:

• The All-in-One multiclass SVM involves training binary classifiers for all (
𝑟
2

) pairs of 𝑟 classes.

• Using 1-factorization, these binary classifiers are grouped into 𝑟 − 1 disjoint sets, where no two classifiers in

the same set share a class.

2. Parallelization:

• Each "matching" (set of binary classifiers) can be trained independently, as the classifiers in the matching do

not interfere with one another.

• This reduces the computational complexity by enabling parallel computation.

3. Efficient Predictions:

• During prediction, scores from all binary classifiers are aggregated to determine the most likely class, similar

to how all edges in the graph contribute to the complete classification process.

Symmetric ADMM with 1-Factorization

Reformulated problem: Introducing auxiliary variable Z and dual variable 𝜆 and we rewrite the problem as:

min
𝑊,𝑍

1

2
 ‖𝑤‖𝐹

2 + 𝐶 ∑ ∑ 𝜉𝑖,𝑘

𝑘≠𝑦𝑖

𝑛

𝑖=1

subject to:

Pairwise constraints for each matching 𝐹𝑗 and 𝑊 = 𝑍. The augmented Lagrangian is:

𝜁(𝑊, 𝑍, 𝜉, 𝜆) =
1

2
 ‖𝑊‖𝐹

2 + 𝐶 ∑ ∑ 𝜉𝑖,𝑘

𝑘≠𝑦𝑖

𝑛

𝑖=1

+
𝜌

2
 ‖𝑊 − 𝑍 + 𝜆

𝜌⁄ ‖
𝐹

2

Algorithm 2: Symmetric ADMM with 1-Factorization

1. Initialization:

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ← 𝑊(0), 𝑍(0), 𝜆(0), 𝜉(0), 𝑎𝑛𝑑 𝜌 > 0.
 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒 𝐺 𝑖𝑛𝑡𝑜 𝐾 − 1 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑠 𝐹1, 𝐹𝐾−1

2. Iterative Updates:

 Update W: Solve the regularized least-squares problem

 𝑢𝑝𝑑𝑎𝑡𝑒 𝑊 ← 𝑊(𝑡+1) = 𝑎𝑟𝑔 min
𝑤

1

2
 ‖𝑊‖𝐹

2 +
𝜌

2
 ‖𝑊 − 𝑍(𝑡) + 𝜆(𝑡)/𝜌‖

𝐹

2

 Update Z: Solve the constrained optimization for each matching 𝐹𝑗 ,

 𝑢𝑝𝑑𝑎𝑡𝑒 𝑍 ← 𝑍(𝑡+1) = 𝑎𝑟𝑔 min
𝑍

𝜌

2
 ‖𝑊(𝑡+1) − 𝑍 + 𝜆(𝑡)/𝜌‖

𝐹

2

subject to

 𝑤𝑦𝑖
𝑇 𝑥𝑖 − 𝑤𝑘

𝑇𝑥𝑖 ≥ 1 − 𝜉𝑖,𝑘, 𝜉𝑖,𝑘 ≥ 0 ∀(𝑦𝑖 , 𝑘) ∈ 𝐹𝑗

 Update ξ:

 𝜉𝑖,𝑘
(𝑡+1)

← max (0,1 − 𝑤𝑦𝑖
𝑇 𝑥𝑖 + 𝑤𝑘

𝑇𝑥𝑖)

 Dual update: Update the dual variables

 𝜆(𝑡+1) ← 𝜆(𝑡) + 𝜌(𝑊(𝑡+1) − 𝑍(𝑡+1))

3. Convergence Check: Monitor convergence for the primal and dual residuals:

 ‖𝑊(𝑡+1) − 𝑍(𝑡+1)‖
𝐹≤ ∈,

 ‖𝜌(𝑍(𝑡+1) − 𝑍(𝑡))‖
𝐹≤ ∈

The algorithm 2 is the key idea to integrate symmetric ADMM with 1-factorization to enhance the performance of the

algorithm, here slack variables and other values are updated.

Algorithm 3: Crammer-Singer Multiclass SVM with 1-Factorization and Symmetric ADMM in a distributed

environment.

1. Initialization

• Input dataset {(𝑥𝑖 , 𝑦𝑖)}𝑖=1,
𝑛 𝐾 𝐶𝑙𝑎𝑠𝑠𝑒𝑠

• Initialize 𝑊(0), 𝑍(0), 𝜉 (0), 𝜆(0), 𝑎𝑛𝑑 𝜌 > 0

• Decompose the complete graph 𝐺 ← (𝑉, 𝐸)

𝑤ℎ𝑒𝑟𝑒 𝑉 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 𝑖𝑛𝑡𝑜 𝐾 − 1 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑠 {𝐹1,𝐹2, … . 𝐹𝐾−1}

Fuel Cells Bulletin
ISSN: 1464-2859

246 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

2. Iterative Updates: For 𝑡 = 0,1,2 … . 𝑢𝑛𝑡𝑖𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

• Step 1: W-update: Solve the regularized least-squares problem:

𝑊(𝑡+1) ← 𝑎𝑟𝑔 min
𝑊

1

2
 ‖𝑊‖𝐹

2 +
𝜌

2
 ‖𝑊 − 𝑍(𝑡) + 𝜆(𝑡)/𝜌‖

𝐹

2

This is standard closed-form update:

𝑊(𝑡+1) ←
1

1 + 𝜌
 (𝑍(𝑡) − 𝜆(𝑡)/𝜌)

• Step 2: Z-update: For each matching 𝐹𝑗, 𝑆𝑜𝑙𝑣𝑒, the constrained optimization problem:

𝑍(𝑡+1) ← 𝑎𝑟𝑔 min
𝑍

𝜌

2
 ‖𝑊(𝑡+1) − 𝑍 + 𝜆(𝑡)/𝜌‖

𝐹

2

Subject to

 𝑊𝑦𝑖
𝑇𝑥𝑖 − 𝑍𝑘

𝑇𝑥𝑖 ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0 ∀(𝑖, 𝑘) ∈ 𝐹𝑗

 This step is distributed, with each worker solving its assigned matching

• Step 3:Dual Variable Update: Update the dual variables:

 𝜆(𝑡+1) ← 𝜆(𝑡) + 𝜌(𝑊(𝑡+1) − 𝑍(𝑡+1))

• Convergence Check: Check for primal and dual residual:

 ‖𝑊(𝑡+1) − 𝑍(𝑡+1)‖
𝐹≤ ∈,

 ‖𝜌(𝑍(𝑡+1) − 𝑍(𝑡))‖
𝐹≤ ∈

3. Output: Optimized weight matrix 𝑊 for classification.

The algorithm 4 demonstrated how the optimal weight matrix are determined through 1-factorization and global updated. The

steps are iteratively executed so that convergence is achieved for the Crammer-Singer algorithm.

Algorithm 4: Weston-Watkins Multiclass SVM with 1-Factorization and Symmetric ADMM in a distributed

environment.

1. Initialization

• Input dataset {(𝑥𝑖 , 𝑦𝑖)}𝑖=1,
𝑛 𝐾 𝐶𝑙𝑎𝑠𝑠𝑒𝑠

• Initialize 𝑊(0), 𝑍(0), 𝜉 (0), 𝜆(0), 𝑎𝑛𝑑 𝜌 > 0

• Decompose the complete graph

• 𝐺 ← (𝑉, 𝐸) 𝑖𝑛𝑡𝑜 𝐾 − 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑠 {𝐹1,𝐹2, … . 𝐹𝐾−1}

2. Iterative Updates: For 𝑡 = 0,1,2 … . 𝑢𝑛𝑡𝑖𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

• Step 1: W-update: Solve the regularized least-squares problem:

𝑊(𝑡+1) ← 𝑎𝑟𝑔 min
𝑊

1

2
 ‖𝑊‖𝐹

2 +
𝜌

2
 ‖𝑊 − 𝑍(𝑡) + 𝜆(𝑡)/𝜌‖

𝐹

2

This update is identical to the Crammer-Singer case:

𝑊(𝑡+1) ←
1

1 + 𝜌
 (𝑍(𝑡) − 𝜆(𝑡)/𝜌)

• Step 2: Z-update: For each matching 𝐹𝑗, 𝑆𝑜𝑙𝑣𝑒:

𝑍(𝑡+1) ← 𝑎𝑟𝑔 min
𝑍

𝜌

2
 ‖𝑊(𝑡+1) − 𝑍 + 𝜆(𝑡)/𝜌‖

𝐹

2

Subject to

 𝑤𝑦𝑖
𝑇 𝑥𝑖 − 𝑤𝑘

𝑇𝑥𝑖 ≥ 1 − 𝜉𝑖,𝑘, 𝜉𝑖,𝑘 ≥ 0 ∀(𝑦𝑖 , 𝑘) ∈ 𝐹𝑗

• Step 3: Slack Variables (𝜉)𝑢𝑝𝑑𝑎𝑡𝑒: Update the slack variables for hinge loss:

 𝜉𝑖,𝑘
(𝑡+1)

← max (0,1 − 𝑤𝑦𝑖
𝑇 𝑥𝑖 + 𝑤𝑘

𝑇𝑥𝑖)

• Step 4:Dual Variable Update: Update the dual variables:

 𝜆(𝑡+1) ← 𝜆(𝑡) + 𝜌(𝑊(𝑡+1) − 𝑍(𝑡+1))

• Convergence Check: Check for primal and dual residual convergence:

 ‖𝑊(𝑡+1) − 𝑍(𝑡+1)‖
𝐹≤ ∈,

 ‖𝜌(𝑍(𝑡+1) − 𝑍(𝑡))‖
𝐹≤ ∈

3. Output: Optimized weight matrix 𝑊 for classification.

The algorithm 5 demonstrated how the optimal weight matrix are determined through 1-factorization and global updated. The

steps are iteratively executed until the convergence is achieved for the Weston-Watkins algorithm.

Fuel Cells Bulletin
ISSN: 1464-2859

247 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

4. Experiments and Analysis

To evaluate the All-in-One multiclass SVM classifier using a 1-factorization approach with Symmetric ADMM, the experiment

is conducted in a distributed environment with a cluster of 3 nodes. Below are the detailed steps, configurations, and

observations:

Setup

We experimented the algorithms in the in the cluster of 3 machines: One is a master node and remaining two are the worker

nodes. The hardware configuration of the cluster is 16 GB RAM of each machine with 500GB SSD, Intel Core i5 CPU, @ 2.6

GHz speed with 0.1 Gigabit Ethernet network. We adopted the polynomial kernel for the SVM model to capture non-linear

patterns in the data, with hyper-parameters C set to 10 (regularization parameter), 𝛾 set to 10 (kernel coefficient) and penalty

parameter of ADMM 𝜌 is set to 1. Each instance in the dataset is represented as a feature vector, making it suitable for kernel-

based methods like SVMs to capture complex relationships in the data.

We implemented the algorithms using MPI framework (OpenMPI 4.2) for inter-node communication and OpenMP for intra-

node parallelism in the Python environment.

Dataset Distribution

The Large Scale Hierarchical Text Classification (LSHTC) dataset is designed for large-scale, multi-class, and hierarchical

text classification tasks. The dataset is derived from the Open Directory Project (ODP), also known as DMOZ [28], which is a

human-curated hierarchical directory of web pages. It contains hierarchical category labels for text documents. Each document

is assigned to one or more categories within a large hierarchical taxonomy. It is a benchmark dataset used to evaluate machine

learning models that handle a large number of classes and hierarchical relationships

Challenges of the LSHTC dataset

• Scalability: The large number of classes and instances requires efficient algorithms to handle memory and computation

constraints.

• Class Imbalance: Some classes have significantly fewer instances than others, leading to skewed classification

performance.

• Hierarchical Dependencies: Models must account for hierarchical relationships among classes, adding complexity to

training and evaluation.

• Sparse Representation: The high scarcity of the feature matrix requires specialized storage and processing techniques,

such as compressed sparse row (CSR) formats.

Training and Testing

The LSHTC dataset is provided in multiple versions, in our experiment, we have used LSHTC- large and LSHTC-2012, details

of the dataset provided in Table 3.1. These two datasets differing in the number of classes, instances, and hierarchy depth.

Table 1. Features of LSHTC Large and LSHTC-2012 Dataset

Feature LSHTC Large LSHTC-2012

Instances ~200,000 training, ~50,000 test ~93,000 training, ~7,000 test

Features ~50,000 sparse features ~16,000 sparse features

Classes Over 20,000 ~12,000

Dimension ~381,581 ~575,555

Hierarchy Depth Up to 15 levels Up to 10 levels

Purpose Scalability-focused benchmark Hierarchical classification refinement

Challenges Extreme scalability, deep hierarchies Hierarchical consistency, feature sparsity

Results

In order to measure the performance of the algorithms provided increasing the number of cores and run the algorithm for static

number of iterations on the incremental size of the LSHTC dataset where the regularization parameter value is [𝐶 =

10, 𝑎𝑛𝑑 𝛾 = 10] as polynomial kernel parameter and the ADMM penalty parameter[𝜌 = 1]. The dataset spread evenly on the

worker nodes of the cluster to train locally by using MPI.

Fuel Cells Bulletin
ISSN: 1464-2859

248 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

(a) (b)

Figure 3. Speedup of CS and WW algorithms for LSHTC Large (a) and 2012 (b)

The result of speedup of both algorithms shown in Figure 4.1 for the dataset LSHTC- Large (a) and LSHTC-2012 (b). Both

the algorithms unveils the linear speedup and also shows a little cost of the communication. The observation shows that Weston-

Watkins algorithm performed better compared to Crammer-Singer, eventually both algorithms exhibits linear speedup.

(a) (c)

(b) (d)

Figure 4. Training time accuracy of the algorithm for LSHTC-Large and LSHTC-2012

The performance of the algorithms is measured in terms of training time and accuracy. The above graphs Figure 4.2 (a) depicts

the speedup of the algorithms as we increase the numbers of nodes.

Weston-Watkins algorithms achieves reasonable speed as compared with Crammer-Singer as communication overhead might

be the reason and it is future research scope. Figure 4.2 (b) illustrates the training time of the algorithms including OVR for the

different regularization parameter value [-2, -1, 0, 1] similarly from Figure 4.2 (d) both shows training time for LSHTC Large

and LSHTC-2012 with polynomial kernel value and symmetric ADMM penalty parameter [𝛾 = 10 𝑎𝑛𝑑 𝜌 = 1], WW takes

less training time. It shows good result for SVM hyper-parameter𝐶 = 1 𝑎𝑛𝑑 𝛾 = 10. Figure 4.2 (c) shows the training accuracy

there is not much deviation in the accuracy.

Fuel Cells Bulletin
ISSN: 1464-2859

249 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

(a) (b)

Figure 5. Training time of WW and CS algorithm for LSHTC-Large and LSHTC-2012

The training time of the Weston-Watkins and Crammer-Singer algorithms for LSHTC-Large and LSHTC-2012 is evaluated

with following SVM hyper-parameters as shown.

[𝐶 = 1, 𝛾 = 10, 𝜌 = 1]the penalty parameter of SADMM is set to 1. The Figure 4.3(a) is for LSHTC-Large and Figure 4.3 (b)

is for LSHTC-2012 and the instances are incremented in power of 2 and trained up to 6 sets of the instances. It is observed that

WW algorithms performs better than CS in the cluster of 3 nodes.

(a) (b)

Figure 6. Training Accuracy of WW and CS algorithm for LSHTC-Large and LSHTC-2012

The training time of the Weston-Watkins and Crammer-Singer algorithms for LSHTC-Large is shown in the Figure 4.4(a) as

the dataset size increases both the algorithm shows almost constant accuracy. In case of LSHTC-2012 the Figure 4.4(b) shows

there is little variations in the accuracy as the number of instances increases but it is in a range from 1 to 2 %. Our understanding

and observation is that as dataset increases there is a slight variation in the accuracy of both the algorithms.

Table 2. F1-Score of both Algorithms

Dataset Micro-F1 Macro-F1

 OVR CS WW OVR CS WW

LSHTC-Large

log (c) : -2 15.88 40.16 39.21 2.86 25.29 20.16

 -1 23.14 41.17 42.06 4.11 25.71 25.82

 0 37.19 44.38 44.20 12.98 30.74 36.62

 1 41.87 43.19 43.02 25.17 36.11 36.19

LSHTC-2012

log (c) : -2 25.48 50.17 49.11 0.19 20.06 15.80

 -1 40.01 52.86 54.62 2.10 22.91 25.15

 0 51.11 57.83 56.10 13.26 34.09 34.20

 1 53.76 54.91 53.91 26.71 32.55 30.11

The F1-Score, Micro-F1 and Macro-F1 is achieved by the both Crammer-Singer and Weston-Watkins algorithms on the

LSHTC dataset. The best result across C values highlighted in the bold. Comparing WW and CS, WW performs marginally

Fuel Cells Bulletin
ISSN: 1464-2859

250 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

better at classifying. To the best of our knowledge this is a first time comparison of well-known multiclass SVM algorithm

implemented using symmetric ADMM with 1-factorization.

Table 3. Aspects of CS and WW algorithm comparison

Aspect Crammer-Singer SVM Weston-Watkins SVM

Loss Function Penalizes misclassification

margins.

Penalizes hinge loss for incorrect classes.

Number of Constraints 𝑂 (𝑛 . 𝐾) 𝑂 (𝑛 . 𝐾), but fewer active constraints.

Slack Variables Global 𝜉𝑖 per sample Pairwise 𝜉𝑖,𝑘 for each incorrect class.

Computational Complexity Slightly higher due to tighter

constraints.

Lower due to simpler constraints.

Computational Complexity

• Local Updates: Solving the optimization problem at each node involves iterating over the local dataset. Complexity

depends on the size of 𝐷𝑛 and the number of classes 𝐾.

• Global Updates: Aggregating local weights and dual variables has a communication overhead proportional to the

number of nodes 3 and considering cores we used up to 16 cores.

• Overall Complexity: For 𝑁 nodes and 𝑀 total instances in the dataset, the per-iteration complexity is approximately:

𝑂 (
𝑀

𝑁
 . 𝐾 . 𝑑), where 𝑑 is the feature dimension.

The computational time of Crammer-Singer (~56 sec) is marginally more compared with Weston-Watkins (~44) with

convergence of 20 iterations and 56 iterations respectively.

5. Conclusion

This paper introduces an efficient and scalable framework for multi-class classification using symmetric ADMM with a 1-

factorization approach, implemented in a distributed environment leveraging OpenMPI and OpenMP. The framework was

evaluated on the LSHTC dataset, demonstrating strong performance in handling high-dimensional, sparse, and hierarchical data.

Both the Crammer-Singer (CS) and Weston-Watkins (WW) formulations were implemented and analyzed. While WW exhibited

superior performance in terms of classification accuracy and computational efficiency, CS performed also well but marginally

introduces communication overhead. The combination of distributed computation with symmetric ADMM effectively addressed

challenges associated with large-scale classification tasks. However, future work should focus on improving model

generalization, particularly for imbalanced classes, and extending the framework's adaptability to diverse data modalities.

Exploring deep learning-based approaches or hybrid models that integrate traditional SVMs with neural networks may provide

further advancements in classification performance and computational efficiency.

References:

[1]. Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the

alternating direction method of multipliers. Foundations and Trends® in Machine Learning, 3(1), 1–122.

https://doi.org/10.1561/2200000016

[2]. Shi, X., Chen, W., & Zhang, Q. (2020). Distributed multiclass SVM for large-scale text classification. Journal of Machine

Learning Research, 21(1), 1-32.

[3]. Zhang, R., & Zhou, D. (2012). Parallel training of SVMs on large datasets using MapReduce. IEEE Transactions on Big

Data, 2(1), 1-14.

[4]. Geeta, R. B., Totad, S. G., Reddy, P., & Shobha, R. B. (2015). “Big data structure and usage mining coalition”, International

Journal of Services Technology and Management, 21(4/5), 6.

[5].Wang, Y., & Zhou, X. (2015). A scalable OvR multiclass SVM for distributed frameworks. ACM Transactions on Knowledge

Discovery from Data, 9(3), 1-18.

[6]. Geeta R.B., Shobha R.B, Shashikumar G. Totad and Prasad Reddy , “Smart Behavioral Driven Power Stasher” in Global

Journal of Advanced Engineering Technologies, Vol3, Issue3-2014, ISSN:2277-6370, pp-274-282

 [7]. Weston, J., & Watkins, C. (1999). Support vector machines for multi-class pattern recognition. In Proceedings of the 7th

European Symposium on Artificial Neural Networks (ESANN) (pp. 219–224).Crammer, K., & Singer, Y. (2001). On the

Algorithmic Implementation of Multiclass SVMs.

https://doi.org/10.1561/2200000016

Fuel Cells Bulletin
ISSN: 1464-2859

251 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

[8].Shashikumar G. Totad, Geeta R.B, and Prasad Reddy PVGD, “Scaling Data Mining Algorithms to Large and Distributed

Datasets”, International Journal of Database Management Systems(IJDMS), Vol.2, No.4, pp 26-35, Nov. 2010, ISSN:

0975-5705.

[9].Zaharia, M., Chowdhury, M., Das, T., et al. (2012). Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-

Memory Cluster Computing.

[10].Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A Library for Support Vector Machines.

[11].Vijaykumar Bhajantri, Shashikumar G Totad, Geeta R. B, “Enhancement of Scalability of SVM Classifiers for Big Data” ,

Book chapter(no-9) in edited Book ", Advances in Data Science and Analytics", Wiley(Online library), Aug-2022, ISBN:

9781119791881 .

[12].Praveen M Dhulavvagol, S G Totad, “Comparative Study analysis of Classification Algorithms”, Feb-2022 International

Conference on Expert Clouds and Applications (ICOECA 2022) held at RV Institute of Technology & Management,

Bangalore, during 3-4 Feb 2022.

[13].Cai, J., & He, K. (2012). A distributed algorithm for training large-scale hierarchical text classifiers. In Proceedings of the

21st ACM International Conference on Information and Knowledge Management (pp. 175–184).

https://doi.org/10.1145/2396761.2396791

[14]. Preeti Jigalur, Geeta R. B, Shashikumar G. Totad, “Optimized Resource Utilization in Cloud Computing”, International

Journal of Computer Science, Vol-5,Issue 4, Jul-Aug 2017. pp. 123-125, ISSN: 2347-8578 ,

http://www.ijcstjournal.org/volume-5/issue-4/IJCST-V5I4P20.pdf,

https://www.academia.edu/34350436/_IJCST_V5I4P20

[15].Neha Deshpande, Shashikumar G Totad, Karibasappa K. G. “Comparative analysis of optimization techniques on Multi-

class SVM”, IEEE 3rd International Conference of Emerging Technologies, Jain College , Belgaum, 27th May –

29th MAY 2022.

[16].Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Technical Report,

Department of Computer Science, National Taiwan University.

[17].Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pegasos: Primal estimated sub-gradient solver for SVM. In

Proceedings of the 24th International Conference on Machine Learning (ICML) (pp. 807–814).

https://doi.org/10.1145/1273496.1273598

[18].Shashikumar G. Totad, Geeta R.B, and Prasad Reddy PVGD, “Scaling Data Mining Algorithms to Large and Distributed

Datasets”, International Journal of Database Management Systems (IJDMS), Vol.2, No.4, pp 26-35, Nov. 2010, ISSN:

0975-5705

[19].Yu, H., Yang, S., & Zhu, S. (2012). Parallel distributed processing of massive hierarchical SVMs. In IEEE Transactions on

Neural Networks and Learning Systems, 23(2), 192–200. https://doi.org/10.1109/TNNLS.2011.2178448

[20].Yang, L., Song, H., & Lu, Z. (2015). Efficient multi-class classification for large-scale hierarchical text datasets. In

Proceedings of the 23rd ACM International Conference on Multimedia (pp. 1231–1235).

https://doi.org/10.1145/2733373.2806258

[21]. Shashikumar G. Totad, Geeta R.B, and Prasad Reddy PVGD, “Batch incremental processing for FP-tree construction using

FP-Growth algorithm”, in Springer’s KAIS journal(DOI 10.1007/s10115-012-0514-9) Vol. 33, Issue 2, pp 475–490,

2012 (IF:2.22)

[22].Wang, Y., & Gu, J. (2015). A graph-based approach to multi-class classification problems. IEEE Transactions on Neural

Networks and Learning Systems, 26(3), 637 648.

DOI: 10.1109/TNNLS.2014.2336615

[23].Yashaswini Joshi, Geeta R.B, Shashikumar G. Totad, and Prasad Reddy PVGD, "Mobile Agent based Frequent Pattern

Mining for Distributed Databases", (Springer sponsored) International Conference on Intelligent Computing and

Communication (ICICC - 2017) on 2 to 4th August 2-4, 2017 at MAEER's MIT College of Engineering, Pune; Intelligent

Computing and Information and Communication(Springer BookChapter), 20-01-2018,pp:77-85,DOI:10.1007/978-981-

10-7245-1_9, ISBN: 978-981-10-7244-4.

[24]. Alber, M., Zimmert, J., Dogan, U., & Kloft, M. (2017). Distributed optimization of multi-class SVMs. PLOS ONE, 12(6),

e0178161

[25]. Fang, C.-H., Kylasa, S. B., Roosta, F., Mahoney, M. W., & Grama, A. (2018). Newton-ADMM: A distributed GPU-

accelerated optimizer for multiclass classification problems. arXiv preprint arXiv:1807.07132

[26]. Vijayakumar H. Bhajantri, Shashikumar G. Totad, Geeta R. Bharamagoudar. (2024). Scalable Distributed Computing for

Large-Scale SVM: A Symmetric ADMM Approach. Journal of International Crisis and Risk Communication Research,

1167–1178. Retrieved from https://jicrcr.com/index.php/jicrcr/article/view/2547

[27]. Crammer, K., & Singer, Y. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. Journal

of Machine Learning Research, 2, 265–292.

https://doi.org/10.1145/2396761.2396791
http://www.ijcstjournal.org/volume-5/issue-4/IJCST-V5I4P20.pdf
https://www.academia.edu/34350436/_IJCST_V5I4P20
https://doi.org/10.1145/1273496.1273598
https://doi.org/10.1109/TNNLS.2011.2178448
https://doi.org/10.1145/2733373.2806258
https://link.springer.com/journal/10115/33/2/page/1
https://jicrcr.com/index.php/jicrcr/article/view/2547

Fuel Cells Bulletin
ISSN: 1464-2859

252 Vol: 2024|Iss: 7|2024|© 2024 Fuel Cells Bulletin

[28]. Partalas, I., Kosmopoulos, A., Baskiotis, N., Paliouras, G., Gaussier, E., Androutsopoulos, I., & Klasinas, I. (2015). LSHTC:

A benchmark for large-scale text classification. arXiv preprint arXiv:1503.08581. https://arxiv.org/abs/1503.08581

[29] Yang, L., Li, J., & Fang, Z. (2019). Symmetric ADMM for distributed machine learning. Proceedings of the Neural

Information Processing Systems (NeurIPS), 2019.

 [30] Geeta R.B, Shashikumar G. Totad and Prasad Reddy PVGD “ Amalgamation of Web usage Mining and Web structure

Mining” International Journal of Recent Trends in Engineering, Vol. 1, No. 2, May 2009

[31] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., & Lumsdaine, A. (2004). Open MPI:

Goals, concept, and design of a next-generation MPI implementation. In Proceedings of the 11th European PVM/MPI

Users' Group Meeting (pp. 97-104). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-30218-6_19

https://arxiv.org/abs/1503.08581

