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Abstract

Balancing power generation and demand is a critical challenge in large-scale renewable energy systems. This paper
focuses on energy forecasting for demand and supply in Saudi Arabia, leveraging a high-resolution dataset encompassing
solar energy production from the country’s first large-scale solar plant and the energy demand of a nearby city. Advanced
machine learning models are developed and evaluated to predict energy supply and demand patterns, addressing the
inherent variability of renewable energy sources. The models effectively utilise historical and weather-related data to
deliver accurate forecasts, enabling optimised planning and integration of renewable energy into the grid. This research
contributes to advancing energy forecasting techniques for large-scale systems, enhancing sustainability and reliability in
Saudi Arabia’s renewable energy sector.
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Introduction

Al and Renewable Energy in Sustainable Grid Management Power generation is divided into non-renewable and
renewable sources. The non-renewable category includes fossil fuels (coal, oil, natural gas) and nuclear power, which
have significant environmental impacts and are finite resources. Renewable energy encompasses hydropower, wind, and
solar energy, which are more sustainable but can be variable and dependent on environmental conditions.

Global warming caused by burning fossil fuels has forced the world to think seriously about power generation
techniques. Among the options, renewable energy is attracting particular attention. This matches the green policy
objectives drafted in most countries in the world. Renewable energy encompasses hydropower, wind, and solar, which
are sustainable but can be variable and dependent on environmental conditions. The availability of natural resources
(like sunlight, wind, and water) dictates the primary energy sources for each country. For example, countries with abundant
sunlight may rely heavily on solar energy, while those with strong winds might invest more in wind power. This geographic
influence may lead to a hybrid policy option in countries with varied renewable sources.

The main challenge facing power-generating industries, irrespective of the generating source, is supply and demand
fluctuation. Energy demand can peak during specific times (like evenings or hot & cold days), thus matching the energy
production and consumption demand requires a careful selection of strategies.

Renewable energy generation is inherently intermittent, making it difficult to match supply with demand. The matching
of supply and demand requires implementing policies to manage the balance. This requires a mechanism for effective
ways to store energy when the generation peaks and consume it when the demand rises. Energy storage solutions,
incentivise the generation and use of renewable energy, with effective demand-response programs aiming to optimise
energy generation and ensure stability and reliability. Maintaining a stable grid requires careful management of energy
flow, especially as the share of variable renewable energy increases. This requires a policy framework that is different for
different countries and requires technological solutions.

Advances in Al, grids, and energy storage technologies are critical for improving the integration of renewable energy
sources and maintaining equilibrium between generation and consumption. Addressing these challenges is essential for
achieving a sustainable and reliable energy future. Historically, energy demand and consumption have been managed
through various methods and technologies, reflecting changes in society, economy, and technology. In the early 20th
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century demand forecasting used statistical methods to predict energy demand helping the planning and generation
capacity. Load management uses ‘Peak Shaving’ to manage high demands [1].

In the century advances in new technologies led to the creation of smart grids, a technology that uses real-time data to
manage energy consumption more efficiently. Demand Response Programs incentivise consumers to reduce or shift their
energy use during peak periods. Energy Storage Solutions such as battery storage and other technologies have improved
the ability to manage supply and demand, particularly with intermittent renewable sources.

In conclusion, energy demand and consumption management have evolved from simple local solutions to complex, data-
driven systems addressing global sustainability challenges. The challenges faced in maintaining energy supply and
demand using renewable energy sources will benefit from applying Al /Machine learning and optimisation models to
ensure a continuous and sustainable energy provision. The challenge in this context is choosing the right Al techniques
and methods and using Machine Learning optimisation models [2].

This research highlights the potential for substantial improvements in solar energy systems’ efficiency, reliability, and
sustainability using advanced Al /Machine learning techniques and mechanisms within the grid context.

Research Questions

1. What is the most appropriate Al framework for solar energy management systems?

2. What Al techniques and mechanisms are suitable for a data-driven machine-learning model?

3. Can the Al/Machine Learning and optimisation model be applied to all renewable energy resources?

4. Can the Al/Machine Learning design for forecasting and optimisation models be made adaptable to address

region-specific climate?

5. How can the model be effectively validated before being adopted?
Literature Review

Historic context

In the early supply-demand energy management system, the initial framework was to match the demand by increasing
the energy supply. In this concept, the primary goal was ensuring electricity generation consistently meets consumer
demand [3]. This was achieved by dynamically adjusting the electricity supply from various power-generating sources. In
this framework, the centralised power grid was fed through a network of main power-generating networks responding to
estimated power demand in the national grid. Large plants (typically coal, nuclear, or large hydro) provided a baseline
supply of electricity, operating continuously to meet average demand. The variation in demand was served by
commissioning and decommissioning smaller power-generating plants (gas or oil-fired) in and out of the national grid to
meet peak demands and match the energy supply and demand. The same framework is applied to hydropower generation,
where small hydropower stations could be phased in and out of operation utilising a water flow management to
immediate demand changes. In this context, energy demand forecasting relies on historical data and predictive models to
estimate demand patterns, adjusting generation schedules accordingly. The Challenge is to ensure a stable and reliable
power supply which requires constant monitoring and quick responses to demand changes. Reliance on fossil fuels for
peaking plants raised concerns about emissions and environmental sustainability however, improvements in forecasting
and advances in data analytics and modelling improved the accuracy of demand predictions, enhancing the efficiency of
the supply-demand balance. Integration of renewable energy gained traction, the framework evolved to accommodate the
variable nature of sources like wind and solar into the equation.

The core of the developed framework evolved for power management systems in the 20th century as discussed is a solid
framework applicable to modern energy forecasting and management. The main point in the generation source is the
adaptation of the framework to replace large plants which are typically fossil fuel-based or nuclear, providing the
baseline supply of electricity, to the renewable baseline of power generation to support an apparent continuous power
generation to respond not only to the average power demand but also to meet the variation in energy demand at peak
periods [4].

The adaptation of the framework encompasses the integration of grids, storage technologies and Al/ Machine Learning.
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This Al framework in which Machine learning models forecasting electricity demand and generation underpins the
apparent continuous and sustainable solar power generation serving modern green energy systems which are the focus of
this research.

Power Generation and Demand Predictions

The baseline energy supply for a country irrespective of its generating source is to support a daily average energy
requirement however, rapid hourly fluctuation in energy demand needs an accurate prediction forecast where machine
learning models can play a pivotal role [5] In the case of renewable energy, the baseline energy demand for power
generation is also subject to fluctuations and therefore, strategies that handle this type of energy as a source need to
predict the rapid hourly fluctuation in energy generation and demand for a large-scale power generation system [6] The
large-scale renewable energy powerplant needs to ensure high operational efficiency which needs accurate power
generation and demand pre- dictions to enable a seamless match of demand and consumption with high accuracy [7].
Continuous power generation in a large-scale renewable power plant is critically important due to the intermittency of the
sources where the need to accommodate the instantaneous variation of power generation and demand is of paramount
importance [8]. In such systems, accurate predictions are critically important to the proactive commissioning and
decommissioning of power sources to sustain uninterrupted operations that meet demand fluctuations [9]. Interruption to
power generation of any sort has grave economic impacts on the domestic and commercial sectors of a country [10].
Initially, in the early 20th century increasing the power generation capability was the policy, but over the years, various
approaches have been employed to predict power demand, each with its own set of advantages and limitations [11]. This
section reviews some of the key methodologies used historically and their inherent challenges.

Accurate power generation and demand predictions are essential for optimising the performance of large-scale renewable
energy power plants. These systems must manage the inherent variability of renewable sources, such as solar and wind,
while simultaneously addressing fluctuating energy demands throughout the day [12] The baseline energy supply must
support daily average requirements, but energy demand can vary rapidly on an hourly basis. This necessitates the use of
machine learning models to forecast these fluctuations effectively [13]. Accurate predictions enable power plants to
match energy generation with consumption, thereby enhancing operational efficiency. In renewable energy systems, the
unpredictability of energy production requires advanced strategies to predict both generation and demand [14]. These
strategies are crucial for continuous power generation and maintaining a steady supply of energy despite the intermittent
nature of renewable sources. Accurate forecasts allow for proactive management of energy re- sources to avoid
disruptions [15]. Efficient operations rely on the ability to anticipate demand and adjust generation accordingly. This
minimises waste and maximises the utilisation of renewable resources. To sustain uninterrupted operations, large-scale
renewable power plants need accurate demand predictions to allow for the timely activation or shutdown of power
sources, ensuring that energy generation meets real-time consumption needs. Interruptions in power generation can lead
to significant economic consequences for domestic and commercial sectors. These disruptions can be minimised by
improving prediction accuracy, protecting the economy and maintaining stability. Integrating machine learning models
for predicting power generation and demand is essential for large-scale renewable energy systems. By addressing the
challenges of fluctuating energy demand and generation, these models can enhance operational efficiency and support the
sustainable growth of renewable energy infrastructures. The continuous advancement in predictive analytics will play a
pivotal role in shaping the future of energy management [16].

Overview of Machine Learning Models for Energy Demand Prediction

Machine learning models are used in every field. The choice is based on their learning style and application. In this
context, the learning categories are Supervised Learning [17], Unsupervised Learning [18], Semi-Supervised Learning
[19], Reinforcement Learning [20], Deep Learning [21], and Ensemble Methods [22]. The Al technique chosen for this
research is supervised learning with mechanisms from a choice of Linear regression, Logistic regression, Decision trees,
Support Vector Machines (SVM) and Neural networks. Ensemble methods combine multiple models to form a hybrid
model to improve performance could help the prediction. Bagging reduces variance with random forest being an example
model based on majority rule and boosting with reducing bias with AdaBoost and XGBoost as a model.

Early approaches to energy demand prediction relied on statistical methods, including linear regression, logistic
regression, and time-series analysis. These methods aimed to identify correlations between energy demand and
generation considering various variables, such as hot and cold weather conditions, and seasonal day and night duration
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[23] Linear regression models attempt to predict energy demand by fitting a linear relationship between the dependent
variable (hot and cold weather, day and night duration) and one or more independent variables (predictors). While simple
and easy to interpret, linear regression models assume a linear relationship between variables, which is often not the case
in complex systems. This limitation reduces their predictive accuracy [24].

Logistic regression is used for binary classification problems. This method is useful for handling categorical outcomes
but still assumes a linear relationship between the predictors and the log odds of the outcome, which may not adequately
capture the complexities of energy demand and generation [25].

Time-series models, such as ARIMA (Autoregressive Integrated Moving Average), are designed to handle temporal
dependencies in data. These models can capture trends and seasonality of energy demand but struggle with the non-linear
interactions between multiple variables. Additionally, time-series models require large amounts of historical data and
may not perform well with sudden and/or instantaneous changes in underlying patterns [26].

The introduction of machine learning (ML) in the late 20th and early 21st centuries as a technique marked a significant
shift in energy demand and prediction methodologies. ML algorithms can handle large datasets, learn from data, and
capture complex, non-linear relationships between variables as a dominant feature in predicting power generation and
consumption [27].

Decision trees partition the data into subsets based on feature values, creating a tree-like structure of decisions that may
suffer from overfitting and underfitting. Random forests improve decision trees by constructing multiple trees and
aggregating their predictions to address the underfitting and overfitting issues. Random forest is a powerful method but
can become overly complex, particularly with high-dimensional data [28].

Bidirectional Long Short-Term Memory (BiLSTM) networks enhance the basic LSTM model by processing data in both
forward and backward directions. Although LSTMs are proficient in handling long-range dependencies, they typically
process sequences in only one direction—from beginning to end (forward). While this approach works well for many
tasks, it can be beneficial in certain applications, such as energy demand forecasting, to consider both past and future
context [29]. Despite BILSTM potential, the model requires large amounts of data and significant computational
resources for training and deployment [30].

Hybrid models, such as LSTM-CNN, combine the strengths of various techniques. LSTM-CNN models in- integrate the
temporal sequence modelling capabilities of Long Short-Term Memory (LSTM) networks with the spatial feature
extraction abilities of Convolutional Neural Networks (CNN). This combination enables a more comprehensive analysis
and enhances prediction accuracy.

Ensemble methods, including random forests and gradient boosting machines, combine the predictions of multiple
models to improve robustness and accuracy. By leveraging the strengths of individual models, these techniques help
reduce the risk of overfitting and enhance generalisation [31].

Challenges and Future Directions in Predictive Modelling for Renewable Energy

Despite the advances in predictive modelling techniques, the accuracy of predictive models depends heavily on the
quality and availability of data. Incomplete, inaccurate, or inconsistent data can significantly impact model performance.
Moreover, obtaining real-time data for dynamic prediction remains a challenge [32]. Advanced machine learning and
deep learning models, while powerful, are computationally intensive. Training these models requires substantial
computational resources and time, which can be a barrier to their widespread adoption in operational settings [33].
Complex models, such as deep learning architectures, often operate as ’black boxes,” making it difficult to interpret their
predictions. This lack of transparency can hinder trust and acceptance among stakeholders [34]. Many predictive models
can be developed and validated using data from specific countries or regions. This can limit their generalisability where
different environmental conditions could impact the prediction however, to prove the concept a generalisability issue
may not be the main concern. In general, integrating predictive models with existing renewable power plants is
challenging. Ensuring seamless interaction between predictive models and real-time decision-making processes is critical
[35] [36]. This literature review highlights the advancements in energy generation and demand prediction models using
Machine learning and deep learning techniques as discussed in this text. It addresses various models, including...SVMs,
ANNSs, LSTMs, CNNs, and possible hybrid models. The review also examines the broader application of Al in the power
generation industry, emphasising its impact on predictive energy management of renewable energy generation and
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consumption. Despite significant progress, gaps remain in the existing research. Many studies have focused on individual
renewable energy sources or specific datasets, limiting the generalisability of the models. The integration of unstructured
data sources is also in its early stages. This research aims to develop a predictive Al/Machine Learning and optimisation
model that is robust and adaptable for solar energy generation and consumption. The model uses a high-dimensional real
raw dataset from Saudi Arabia’s First Solar Plant and City Demand. The dataset will partly be used to train the data and
partly to validate the Al model. The design is to apply and test the models discussed in this review to solar energy
generation and consumption and compare

and analyse parameters such as R-squared (R?), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
Mean Absolute Percentage Error (MAPE), which are relevant to the prediction models. The out-come of the research
proposes a model unique to solar energy that will be based on a hybrid Al/Machine Learning model to process the
dataset, with high predictive accuracy and reliability.

Knowledge Gaps

The primary knowledge gap in this research is the lack of an integrated Al/Machine learning framework that predicts
hourly energy demand and balances solar power generation while optimising the supply and demand in large-scale
systems.

Despite significant advancements in energy forecasting and optimisation techniques, crucial gaps re- main in applying
Al/Machine learning technology to large-scale energy systems that lack integrated Al-driven forecasting-optimisation
frameworks in regions with unique climatic challenges.

The Al-driven forecasting-optimisation framework requires high-resolution datasets (hourly measurements) to capture
rapid fluctuations and the dynamic nature of energy consumption and generation.

A high-resolution dataset is crucial for accurately modelling an Al/Machine learning model.

Most forecasting and optimisation models are developed for small-scale applications and are not adaptable to region-
specific climates. These models do not support large-scale energy systems.

Methodology

This section outlines the methodology adopted for forecasting energy demand and photovoltaic (PV) supply using
advanced machine learning models. It details the dataset utilised, feature engineering techniques, model architectures,
training and validation strategies, and evaluation metrics.

Model Selection

Time-series forecasting in energy systems necessitates models capable of capturing temporal dependencies, handling
multivariate input, and performing well under varying seasonal conditions. The following models were selected based on
their suitability for such tasks and documented effectiveness in similar studies [37], [38].

Table 1: Comparison of Machine Learning Models Used in the Study

Model Strengths Limitations
Long  Short-Term Effective at learning High computational burden and sensitivity to
Memory (LSTM) sequences with extensive temporalhyperparameter settings [39].
depths [38].
Bidirectional LSTM  |Superior at understanding Increased computational
(BLSTM) contextual  relationships in  datademand [39].
sequences [39].
Gated Recurrent Unit Requires less computational Potentially less effective at capturing very,
(GRU) power, making it faster to train [37]. complex dependencies [39]
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'Temporal Convolutional  |[Exceptional scalability The fixed receptive field
Network (TCN) and reduced training times [40]. may not be ideal for all time-series applications
[41].

Dataset Description and Preprocessing

The dataset comprises hourly solar power output, energy demand, and weather-related variables collected over one year.
Key variables include:

Historical Variables: Hourly solar energy production from the first large-scale solar plant and corresponding city
electrical demand (in megawatt-hours) [37].

Lagged Variables: Values from 1 and 24 hours prior (Lag 1H, Lag 24H) [44].
Preprocessing steps ensure data quality and facilitate model training.
Data Cleaning: Missing and erroneous values were handled via linear interpolation [37].

Scaling: Features were normalised to a [0,1] range using MinMaxScaler, reducing the influence of features with larger
ranges [38].

Windowing: Sliding windows of 24 hours were applied to structure the data for sequential input into models [40]. Figure 1
illustrates the data split strategy for model training and validation, showing how the data is allocated over time.
Remaining months

Training Testing Training Testing

January 1-20 sy 2sy December 1 - 20 Ueoeinberat:x

(1]
70% fist 20 days of 30% last 10 days of
each month each month

Figure 1: Data split strategy for model training and validation, illustrating the allocation of data over time.
Feature Engineering

Feature engineering was performed to enhance the dataset’s predictive power by incorporating both raw and derived
features:

Temporal Features: Time-based attributes such as hour of the day, day of the week, and weekend indicators were
extracted to capture seasonal and cyclic patterns [43].

Lagged Features: Lag variables for solar power and energy demand were created (Lag 1H and Lag 24H) to capture
autoregressive patterns [44].

Weather Interactions: Interaction features (e.g., Temperature X Humidity) were derived to account for the combined
effects of meteorological factors [41].

Model Architecture and Training

The architectures of the machine learning models were meticulously designed to address the specific challenges of time-
series forecasting in the context of energy demand and solar supply data [39], [40].
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Training Procedures

The models were trained to optimise performance metrics, utilising a comprehensive set of training details that ensured
robustness and generalisability:

Input Representation: Each model processed multivariate input sequences with a window size of 24 hours, designed to
capture daily cycles and trends [44].

Loss Function: Mean Squared Error (MSE) was employed as the primary criterion for training loss, supporting the
minimisation of prediction errors.

Optimiser: The Adam optimiser was chosen for its effectiveness in managing sparse gradients and its adaptability, with a
learning rate of 10—3 [39].

Training Configuration: Each model underwent a training regime spanning 50 epochs, with a batch size of 32. A
validation split of 20% was used to monitor overfitting and validate model accuracy periodically [41].

Data Split: To test the models’ efficacy on unseen data while preserving the integrity of temporal data sequences, a 70/30
split was employed, allocating 70% of data to training and 30% to validation, segmented monthly [41].

Evaluation Metrics and Strategy

The models were evaluated using standard regression metrics:

- Mean Squared Error (MSE): Commonly used in energy forecasting studies [37].
- Mean Absolute Error (MAE): Useful for measuring absolute errors [39].

- Root Mean Squared Error (RMSE): Often applied in solar forecasting [38].

- Coefficient of Determination (R2): Helps in quantifying model fit [41].

Metrics were computed for each month to capture seasonal variability, and the results were averaged to identify the best-
performing models and feature sets [40].

Results and Discussion
Data Acquisition and Analysis of Large-Scale Solar Supply and Urban Demand

The analysis is based on a unique, raw dataset collected from a major solar power plant in Saudi Arabia, comprising
hourly data on solar energy production and urban energy demand for the entire year. This high-resolution dataset
provides detailed insights into the temporal and seasonal dynamics of large-scale solar energy supply and its interaction
with urban demand.

Annual Trends: Solar Supply and City Demand (Scaled)

100 City Demand (Scaled)
PV Supply (Scaled)

60

Power (%
3

2021-01 2021-03 2021-05 202107 2021-09 202111 2022-01
Time
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- ® S —- -—eo——3. o - —
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Figure 2: Annual and daily patterns of solar energy supply (PV) and city demand (scaled).
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The figure highlights the temporal misalignment between midday peaks in solar energy production and evening peaks in
urban demand, as well as seasonal variations throughout the year.

Key Insights

- Temporal Misalignment: The data highlights a clear mismatch between peak solar production and peak urban
energy demand, emphasising the need for advanced storage solutions and grid management strategies to mitigate this
imbalance.

- Seasonal Variability: Both solar supply and city demand exhibit significant seasonal fluctuations, which are
critical for effective long-term energy system planning and optimisation.

- Relevance and Implications: The unique nature of this raw dataset makes it invaluable for energy research,
particularly in developing models to predict and manage energy supply and demand in large-scale systems. By
leveraging this data, it is possible to propose innovative strategies for energy storage, grid stability, and demand response
that address the inherent variability in solar energy generation and urban consumption patterns.

Machine Learning Model Selection for Prediction

This study evaluated several advanced deep-learning architectures to determine the most effective model for forecasting
city energy demand and photovoltaic (PV) supply loads. Based on findings from the literature, the selected models included
Long Short-Term Memory (LSTM), Bidirectional LSTM (BLSTM), Gated Recurrent Unit (GRU), and Temporal
Convolutional Network (TCN). Each model was carefully designed to capture the temporal dependencies inherent in the
data. The methodology, preprocessing steps, and evaluation results are detailed below.

The datasets for city demand and PV supply were collected at hourly intervals. Missing load values were filled using
linear interpolation to ensure data continuity. The data was then scaled to the range [0, 1] using MinMaxScaler to standardise
inputs and improve training efficiency. To facilitate time-series forecasting, a sliding 24-hour window was applied, using
the previous 24 hours as features to predict the load for the next hour. This window size was chosen for its ability to
capture short-term temporal dependencies effectively.

Model Architectures and Parameters; Table 2 provides a summary of the architectures and hyperparameters for each model.
These include the number and type of layers, units per layer, activation functions, and the optimiser used. All models
employed the Adam optimiser for its ability to handle sparse gradients efficiently, while ReLU activation was used in the
dense layers to enhance stability in predictions. These configurations were specifically tailored to balance complexity
and performance, optimising the models for the forecasting tasks.

Table 2: Model architectures for supply and demand forecasting

Model Layers Units  per Activation Optimiser
Layer

LSTM 2 LSTM layers, 1 Dense 50 ReLU (Dense) Adam
layer

BLSTM 2 Bidirectional LSTM lay- 50 ReLU (Dense) Adam
ers, 1 Dense layer

GRU 2 GRU layers, 1 Dense 50 ReLU (Dense) Adam
layer

TCN 2 ConvlD layers, 2 Max- 64 (ConvlD) ReLU Adam
Pooling layers, Flatten, 1 Dense
layer

Model performance was evaluated using Mean Squared Error (MSE) and Mean Absolute Error (MAE). MSE was selected
for its sensitivity to large prediction errors, providing a measure of overall accuracy, while MAE offered an interpretable
assessment of average error magnitude. The results, as illustrated in Figure 3, show the comparative performance of the
models across both forecasting tasks.
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Figure 3: Machine Learning Model Selection and Evaluation

For city demand forecasting, the BLSTM model consistently achieved the lowest MSE and MAE values, outperforming
other models. Its bidirectional structure, which processes sequences both forwards and backward, allowed it to capture
complex temporal patterns, particularly during high-demand periods, better than unidirectional models such as LSTM and
GRU.

In PV supply forecasting, both LSTM and BLSTM performed well due to their ability to retain long-term dependencies,
a critical factor for modelling the variability of solar energy. However, the BLSTM model had a slight edge, leveraging
its bidirectional structure to better capture broader temporal patterns, especially during rapid transitions in supply. By
contrast, GRU and TCN models struggled with larger deviations, particularly in predicting peak and trough values.

Overall, BLSTM was selected as the primary model for both tasks due to its consistently superior performance. As shown
in Figure 3, its predictions closely tracked actual trends with minimal deviations, while its bidirectional architecture
allowed it to make use of both past and future contextual information. These attributes make BLSTM particularly well-
suited for renewable-integrated energy systems, where data irregularities and complex patterns are common.

Supply Predictions

The dataset used in this research consists of hourly measurements of photovoltaic power output and meteorological
conditions throughout 2021, collected from Saudi Arabia. The preprocessing phase involved several key steps to ensure
the dataset’s integrity and its suitability for time-series analysis. First, data cleaning was performed to remove 150 records
with erroneous power output readings, caused mainly by sensor malfunctions and data transmission errors. These
anomalies, including abrupt drops to zero uncorrelated with weather conditions, were excluded to maintain data
reliability. For continuous variables like irradiance and temperature, sporadic missing values were filled using linear
interpolation to preserve the continuity essential for time-series forecasting. The data was then restructured into a
chronological time-series format, with a date-time index based on hourly timestamps, ensuring accurate sequencing for
prediction.

Feature Engineering was implemented to explore the predictive power of different inputs and encapsulate dynamics affecting
energy output. The features included:

- Historical Data: Past power output measurements to enable the model to learn temporal patterns.

- Weather Variables: Key meteorological factors such as temperature, humidity, atmospheric pressure, wind speed
and direction, solar irradiance, and UV index areall hypothesised to impact photovoltaic power generation.

- Derived Features: These included the clearness index, lagged features, and time-of-day adjustments to account
for daily variations.
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The predictive model utilised a Bidirectional Long Short-Term Memory (BLSTM) network, chosen for its capability to
learn dependencies in sequential data by processing information in both forward and reverse directions. The model
architecture comprised a BLSTM layer with 50 units and a dense output layer that produced the final power generation
forecast. The model was compiled using the Adam optimiser with Mean Squared Error (MSE) as the loss function.

For training and validation, the data was split monthly with a 70/30 division; 70% of the data was allocated for training,
and 30% for validation. Transfer learning was employed, with model weights reinitialised at the start of each new month
based on data from the previous month. This approach enabled the model to adapt to emerging trends while retaining
historical insights. Model Evaluation Results showed robust performance across various feature combinations. As shown
in Table 3, the results highlight the impact of feature selection on model accuracy.

Table 3: Model performance across various feature sets.

Supply Feature Set MSE MAE RMSE R?
Baseline 1 (Historical) 0.0133 0.0653 0.1134 0.9152
Baseline 2. (Historical 0.0129 0.0685 0.1115 0.9192
& Weather)
Full Feature Set 0.0282 0.0957 0.1468 0.8404
Historical & Clearness 0.0133 0.0644 0.1134 0.9153
Historical & Humidity 0.0149 0.0695 0.1193 0.9049
Historical & Irradiance 0.0110 0.0617 0.1032 0.9311
Historical & Pressure 0.0139 0.0694 0.1158 0.9115
Historical & Temperature 0.0137 0.0680 0.1155 0.9126
Historical & UV INDEX 0.0111 0.0593 0.9291
0.1039

Historical & Windspeed 0.0138 0.0661 0.1155 0.9123
Lag Features 0.0125 0.0649 0.1100 0.9200
Time of Day + Lag Features 0.0119 0.0600 0.1069 0.9247

The baseline model, which included only historical data, achieved an R2 of 0.9152. Adding basic weather information
slightly improved this to an R2 of 0.9192. The Historical & Irradiance model exhibited the best performance, achieving an
MSE of 0.0110, MAE of 0.0617, RMSE of 0.1032, and R2 of 0.9311. Similarly, the Historical & UV INDEX model
showed high accuracy with an MSE of 0.0111, MAE of 0.0593, RMSE of 0.1039, and R? of 0.9291. Models
incorporating lagged and temporal features consistently demonstrated high performance.

Historkcal & Trradionce - 2021 - Test Predictions vs Actusts
l 1|l i } i‘ “\w} NI
| ‘ ‘ [ | |
i || i || | ‘ ||
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Figure 4: Historical & Irradiance - Test Predictions vs Actuals

As illustrated in Figure 4, the Historical & Irradiance model closely tracks actual power generation trends with minimal
deviations. The model effectively captures variations caused by weather conditions, showcasing its robustness in forecasting
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photovoltaic power output.
Demand Predictions

The dataset used in this demand forecasting analysis comprises hourly energy demand measurements and meteorological data
throughout 2021, sourced from Saudi Arabia. Data preprocessing was essential to prepare the dataset for accurate time-series
analysis. First, erroneous entries were identified and removed, ensuring the reliability of the dataset by addressing issues likely
stemming from sensor errors or data transmission faults. Missing values, particularly in weather variables, were filled using
linear interpolation, preserving the continuity crucial for time-series forecasting. The data was then organised into a structured,
chronological format with a datetime index based on hourly timestamps, preserving the sequential integrity required for
forecasting. Feature Engineering played a central role in enhancing model predictiveness, encapsulating various factors
influencing energy demand. Key features included:

- Historical Data: Previous energy demand values enabled the model to capture autoregressive patterns within the time
series.

- Weather Variables: Essential meteorological factors, such as temperature, humidity, atmospheric pressure, wind
speed, wind direction, solar irradiance, and UV index, were included due to their anticipated impact on energy consumption
patterns.

- Derived Features: The clearness index (representing solar radiation effectiveness), lagged demand values, and time-of-
day adjustments were incorporated to improve the model’s understanding of consumption patterns.

A Bidirectional Long Short-Term Memory (BLSTM) network was employed for forecasting, chosen for its ability to leamn
dependencies in sequential data by processing inputs bidirectionally. The model architecture comprised a BLSTM layer with 50
units, designed to capture both past and future context within the time series, and a dense output layer to generate final demand
forecasts. The model was compiled using the Adam optimiser and Mean Squared Error (MSE) as the loss function.

For training and validation, the data was split monthly, with 70% designated for training and 30% for validation on the most
recent data. This chronological split preserved time dependency, essential for maintaining forecasting accuracy. A transfer
learning strategy was adopted, where model weights were reinitialised, each month using the previous month’s data, allowing
the model to adapt to changing trends while retaining historical patterns.

Table 4: Model performance across various feature sets for demand forecasting.

Load Feature Set MSE MAE RMSE R?

Baseline 1 (Historical) 0.0064 0.0621 0.0793 0.7991
Baseline 2. (Historical  |0.0086 0.0637 0.0851 0.7231

& Weather)

Full Feature Set 0.0063 0.0609 0.0774 0.8013
Historical & Clearness 0.0041 0.0459 0.0627 0.8764
Historical & Humidity 0.0106 0.0700 0.0910 0.6806
Historical & Irradiance 0.0054 0.0569 0.0725 0.8339
Historical & Pressure 0.0061 0.0571 0.0760 0.8039
Historical & Temperature 0.0057 0.0576 0.0748 0.8255
Historical & UV INDEX 0.0049 0.0526 0.0695 0.8462
Historical & Windspeed 0.0069 0.0619 0.0812 0.7843
Lag Features 0.0040 0.0456 0.0616 0.8811
Time of Day + Lag Features  [0.0039 0.0448 0.0594 0.8867
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Model Evaluation Results demonstrated strong predictive performance across different feature sets. As shown in Table 4,
the results reveal the impact-of feature selection on model accuracy: The baseline model, using only historical demand
data, achieved an R2 of 0.7991, while adding basic weather information (Baseline 2) slightly reduced accuracy to an R? of
0.7231, indicating that weather data alone may not necessarily improve model performance linearly. The Historical &
Clearness configuration achieved an MSE of 0.0041, MAE of 0.0459, RMSE of 0.0627, and an R? of 0.8764, leveraging
the clearness index to capture solar irradiance effects. The Historical & UV INDEX model also performed well, achieving
an MSE of 0.0049, MAE of 0.0526, RMSE of 0.0695, and an R2 of 0.8462. Models with advanced temporal features,
particularly the Time of Day + Lag Features model, demonstrated the highest accuracy with an MSE of 0.0039, MAE of
0.0448, RMSE of 0.0594, and an R2 of 0.8867.

Time of Day + Lag Features - 2021 - Test Predictions vs Actuals

Date-Time

Figure 5: Historical & Time of Day + Lag Features vs Actuals (Short-Term)

Time of Day + Lag Features - 2021 - Test Predictions vs Actuals
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Figure 6: Historical & Time of Day + Lag Features - Test Predictions vs Actuals (Full Year)

As illustrated in Figure 5, the Time of Day + Lag Features configuration closely tracks actual short-term demand trends,
achieving minimal deviations even during peak periods. Over a full year, as shown in Figure 6, the model demonstrates
robust long-term predictive capabilities, effectively aligning with observed demand patterns. These results highlight the
importance of incorporating temporal features and derived metrics in improving forecast accuracy.

Conclusion

This research has demonstrated the efficacy of advanced machine learning models in forecasting and managing the balance
between energy demand and photovoltaic (PV) supply, specifically within Saudi Arabia’s first large-scale solar farm. The
Bidirectional LSTM (BLSTM) model, in particular, has shown superior performance, effectively capturing complex
temporal patterns due to its ability to process data from both past and future contexts. This capability makes it an excellent
candidate for integration into smart grid technologies, where accurate and reliable predictions are crucial for maintaining
energy stability and optimising grid operations.

The findings underscore the importance of sophisticated feature engineering and the strategic selection of machine
learning models tailored to the specific characteristics of the energy dataset. By incorporating both historical and
meteorological data, the models were able to achieve a high level of accuracy, demonstrating their potential to
significantly contribute to the advancement of renewable energy integration within the region.
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Future research should focus on expanding the dataset to include multi-regional data, which would help in understanding
the models’ effectiveness across different geographical and climatic conditions. Additionally, exploring hybrid models that
combine the strengths of various architectures could further enhance prediction accuracy and reliability.

Ultimately, this research contributes to the growing body of knowledge that supports the transition towards more
sustainable and resilient energy systems. By leveraging Al and machine learning, stakeholders in the energy sector can
anticipate demand fluctuations more accurately and harness renewable energy sources more efficiently, paving the way for
smarter energy management and a sustainable future in Saudi Arabia and beyond.
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Appendix
Supply Prediction Studies
Table 5: Comparative Analysis of Machine Learning Models for Solar Energy Forecasting.
ML Model Used \Variables Data Review
Resolution

[45] Multilayer PerceptronWeather variables andHourly over 2Discusses ML models like SVM, ANN,
(MLP) with entityisolar energy productionyears hybrid learning models, and ensemble
embedding. metrics. learning, highlighting gaps in thein

application for solar forecasting.

[46] [Hierarchical TemporalHistorical PV generation,Hourly with anCompares with models like LSTM and CNN
Convolutional Neuralweather data. 18-hour for regional PV forecasting and proposes
Networks (HTCNNS). forecasting hierarchical time-series approaches.

horizon
[47] ICNNand LSTM hybrid. [Solar radiation,Hourly IAddresses  traditional ML  methods’
temperature,  sunshine limitations and compares the hybrid CNN-
duration, and  other LSTM model with other DL techniques.
\weather parameters.

[48] [Ensemble of 13 MLTemperature, humidity,Hourly Compares the performance of various
techniques, includingwind  speed, solar models like SVM, and ANN, showing
ANN, SVM, RF, etc. radiation. SVM’s superior predictive capabilities.

[13] [Random Forest(RF),Weather data recordedHourly Highlights limitations of simpler statistical
ANN, and DNN. PV power output. models, positioning RF as effective for short-

term horizons.

[49] |LSTM, SVM, GraphHistorical solar powenHourly Examines the effectiveness of LSTM and
Spatial-Temporal data. SVM, finding SVM most reliable.

/Attention Neural Network
(GSTANN).

[50] ICNN-LSTM without maxSolar irradiance,Hourly \Validates CNN-LSTM’s capability against
pooling. meteorological data. typical pooling methods, showing improved

accuracy.

[51] |LSTMand RF. Temperature, humidity,Hourly Compares LSTM and RF in handling large

solar radiation, pollution. datasets, concluding LSTM’s superior]
performance.

[52] [Decision Tree, SVM, andElectricity  generation|Hourly (2015-Reviews ML models for grid reliability and
Ensemble. demand, pricing, weather2018) pricing, underscoring Ensemble’s high

data. accuracy.

[13] Bidirectional Long Short{Temperature, humidity,Hourly Evaluate BLSTM for solar  power
Term Memory (BLSTM),solar radiation, windaveraged data [forecasting, finding improved accuracy (up
Random Forest (RF),speed, wind direction,collected afto 37%) across short-term horizons (1 to 4
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ML Model Used \Variables Data Review

Resolution
Artificial Neuraltime of day and PV|15-minute hours ahead) and seasons. Highlights
Networks (ANN), andoutput (solar  powerlintervals. BLSTM’s effectiveness in  modelling
Deep Neural Networksgeneration data). nonlinearity and seasonality in data.
(DNN).

Demand Prediction Studies

Table 6: Comparative analysis of machine learning models for electricity and energy demand prediction.

ML Model Used |Variab|es Data Resolution |Results

[53] A hybrid modelElectricity demand,Daily electricityThe ICMD-ANN-EDLSTM  hybrid
combining ANN,lagged time series data,demand data. model achieved a 2.82% Relative Mean
Encoder-Decoder Longland seasonal trends. Absolute Error, outperforming
Short-Term Memory individual models.
(EDLSTM), and
Im-
proved Complete
Ensemble Empirical

Mode  Decomposition
with  Adaptive Noise

(ICMD).

[54] |Long Short-Term|Electricity demand,Hourly and dailyLSTM model showed improved accuracy
Memory (LSTM) with aseasonal, daily, andfor differenfover traditional models such as Support
multi-input, multi-outputinterval data. 5easons andVector Regression (SVR).
window-based intervals.
architecture.

[55] [Extreme LearningElectricity consumption,Monthly The model achieved significant
Machine (ELM)online  search trends,residential improvements in forecasting accuracy,
optimised by Jaya temperature, and othenelectricity with a MAPE reduction between
algorithm. economic in- indicators. |consumption. 43.03%-53.92%.

[56] XGBoost for predictionBuilding characteristics,Hourly duringThe model estimated a demand shaving
and K-means fonhistorical demanddemand responsecapacity of approximately 4.5 MWh
clustering DR profiles. |[response data, and DRlevents. annually across NYC.

profiles.

[23] |Various models,Hourly energyHourly residentialLS-SVM achieved the best accuracy
including Neurallconsumption, energy among tested models.
Networks and Least‘temperature, and time oficonsumption.

Squares Support Vectonday.
Machines (LS-SVM).

[57] |Artificial NeurallElectricity demand,6-hour and dailyHybrid ANN achieved a Relative Root
Networks (ANN),climate variables frompre-dictions. Mean Square Error (RRMSE) of 3.85%
Multivariate ~ AdaptiveSILO and ECMWH for 6-hour predictions.

Regression Splinesdatasets.
(MARS), and Hybrid
/ANN.

[58] [Hybrid  Prophet-GatedHourly historicalHourly, with dataThe combined model achieved improved
Recurrent Unit (GRU)consumption data forcollected from sixpre-diction accuracy with R? gains of
model. water and electricity;households. 29.2% for water and 48.5% for

auxiliary variableg electricity over single-resource models.
derived from
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ML Model Used Variables Data Resolution |Results
consumption patterns.

[59] [Decision Trees, SupportOutdoor  temperature,Short-term (hourgML models (especially Decision Trees)

\Vector Machines (SVM),solar radiation, time ofto days), using 10-outperformed traditional linean

and Artificial Neuralday, non-working hours,minute intervalregressions, showing potential  for

Networks (ANN). weekend data. deployment in  predictive control
indicators. applications.
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