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Abstract 

Balancing power generation and demand is a critical challenge in large-scale renewable energy systems. This paper 

focuses on energy forecasting for demand and supply in Saudi Arabia, leveraging a high-resolution dataset encompassing 

solar energy production from the country’s first large-scale solar plant and the energy demand of a nearby city. Advanced 

machine learning models are developed and evaluated to predict energy supply and demand patterns, addressing the 

inherent variability of renewable energy sources. The models effectively utilise historical and weather-related data to 

deliver accurate forecasts, enabling optimised planning and integration of renewable energy into the grid. This research 

contributes to advancing energy forecasting techniques for large-scale systems, enhancing sustainability and reliability in 

Saudi Arabia’s renewable energy sector. 
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Introduction 

AI and Renewable Energy in Sustainable Grid Management Power generation is divided into non-renewable and 

renewable sources. The non-renewable category includes fossil fuels (coal, oil, natural gas) and nuclear power, which 

have significant environmental impacts and are finite resources. Renewable energy encompasses hydropower, wind, and 

solar energy, which are more sustainable but can be variable and dependent on environmental conditions. 

Global warming caused by burning fossil fuels has forced the world to think seriously about power generation 

techniques. Among the options, renewable energy is attracting particular attention. This matches the green policy 

objectives drafted in most countries in the world. Renewable energy encompasses hydropower, wind, and solar, which 

are sustainable but can be variable and dependent on environmental conditions. The availability of natural resources 

(like sunlight, wind, and water) dictates the primary energy sources for each country. For example, countries with abundant 

sunlight may rely heavily on solar energy, while those with strong winds might invest more in wind power. This geographic 

influence may lead to a hybrid policy option in countries with varied renewable sources. 

The main challenge facing power-generating industries, irrespective of the generating source, is supply and demand 

fluctuation. Energy demand can peak during specific times (like evenings or hot & cold days), thus matching the energy 

production and consumption demand requires a careful selection of strategies.  

Renewable energy generation is inherently intermittent, making it difficult to match supply with demand. The matching 

of supply and demand requires implementing policies to manage the balance. This requires a mechanism for effective 

ways to store energy when the generation peaks and consume it when the demand rises. Energy storage solutions, 

incentivise the generation and use of renewable energy, with effective demand-response programs aiming to optimise 

energy generation and ensure stability and reliability. Maintaining a stable grid requires careful management of energy 

flow, especially as the share of variable renewable energy increases. This requires a policy framework that is different for 

different countries and requires technological solutions. 

Advances in AI, grids, and energy storage technologies are critical for improving the integration of renewable energy 

sources and maintaining equilibrium between generation and consumption. Addressing these challenges is essential for 

achieving a sustainable and reliable energy future. Historically, energy demand and consumption have been managed 

through various methods and technologies, reflecting changes in society, economy, and technology. In the early 20th 
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century demand forecasting used statistical methods to predict energy demand helping the planning and generation 

capacity. Load management uses ‘Peak Shaving’ to manage high demands [1]. 

In the century advances in new technologies led to the creation of smart grids, a technology that uses real-time data to 

manage energy consumption more efficiently. Demand Response Programs incentivise consumers to reduce or shift their 

energy use during peak periods. Energy Storage Solutions such as battery storage and other technologies have improved 

the ability to manage supply and demand, particularly with intermittent renewable sources. 

In conclusion, energy demand and consumption management have evolved from simple local solutions to complex, data-

driven systems addressing global sustainability challenges. The challenges faced in maintaining energy supply and 

demand using renewable energy sources will benefit from applying AI /Machine learning and optimisation models to 

ensure a continuous and sustainable energy provision. The challenge in this context is choosing the right AI techniques 

and methods and using Machine Learning optimisation models [2]. 

This research highlights the potential for substantial improvements in solar energy systems’ efficiency, reliability, and 

sustainability using advanced AI /Machine learning techniques and mechanisms within the grid context. 

Research Questions 

1. What is the most appropriate AI framework for solar energy management systems? 

2. What AI techniques and mechanisms are suitable for a data-driven machine-learning model? 

3. Can the AI/Machine Learning and optimisation model be applied to all renewable energy resources? 

4. Can the AI/Machine Learning design for forecasting and optimisation models be made adaptable to address 

region-specific climate? 

5. How can the model be effectively validated before being adopted? 

Literature Review 

Historic context 

In the early supply-demand energy management system, the initial framework was to match the demand by increasing 

the energy supply. In this concept, the primary goal was ensuring electricity generation consistently meets consumer 

demand [3]. This was achieved by dynamically adjusting the electricity supply from various power-generating sources. In 

this framework, the centralised power grid was fed through a network of main power-generating networks responding to 

estimated power demand in the national grid. Large plants (typically coal, nuclear, or large hydro) provided a baseline 

supply of electricity, operating continuously to meet average demand. The variation in demand was served by 

commissioning and decommissioning smaller power-generating plants (gas or oil-fired) in and out of the national grid to 

meet peak demands and match the energy supply and demand. The same framework is applied to hydropower generation, 

where small hydropower stations could be phased in and out of operation utilising a water flow management to 

immediate demand changes. In this context, energy demand forecasting relies on historical data and predictive models to 

estimate demand patterns, adjusting generation schedules accordingly. The Challenge is to ensure a stable and reliable 

power supply which requires constant monitoring and quick responses to demand changes. Reliance on fossil fuels for 

peaking plants raised concerns about emissions and environmental sustainability however, improvements in forecasting 

and advances in data analytics and modelling improved the accuracy of demand predictions, enhancing the efficiency of 

the supply-demand balance. Integration of renewable energy gained traction, the framework evolved to accommodate the 

variable nature of sources like wind and solar into the equation. 

The core of the developed framework evolved for power management systems in the 20th century as discussed is a solid 

framework applicable to modern energy forecasting and management. The main point in the generation source is the 

adaptation of the framework to replace large plants which are typically fossil fuel-based or nuclear, providing the 

baseline supply of electricity, to the renewable baseline of power generation to support an apparent continuous power 

generation to respond not only to the average power demand but also to meet the variation in energy demand at peak 

periods [4]. 

The adaptation of the framework encompasses the integration of grids, storage technologies and AI/ Machine Learning. 
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This AI framework in which Machine learning models forecasting electricity demand and generation underpins the 

apparent continuous and sustainable solar power generation serving modern green energy systems which are the focus of 

this research. 

Power Generation and Demand Predictions 

The baseline energy supply for a country irrespective of its generating source is to support a daily average energy 

requirement however, rapid hourly fluctuation in energy demand needs an accurate prediction forecast where machine 

learning models can play a pivotal role [5] In the case of renewable energy, the baseline energy demand for power 

generation is also subject to fluctuations and therefore, strategies that handle this type of energy as a source need to 

predict the rapid hourly fluctuation in energy generation and demand for a large-scale power generation system [6] The 

large-scale renewable energy powerplant needs to ensure high operational efficiency which needs accurate power 

generation and demand pre- dictions to enable a seamless match of demand and consumption with high accuracy [7]. 

Continuous power generation in a large-scale renewable power plant is critically important due to the intermittency of the 

sources where the need to accommodate the instantaneous variation of power generation and demand is of paramount 

importance [8]. In such systems, accurate predictions are critically important to the proactive commissioning and 

decommissioning of power sources to sustain uninterrupted operations that meet demand fluctuations [9]. Interruption to 

power generation of any sort has grave economic impacts on the domestic and commercial sectors of a country [10]. 

Initially, in the early 20th century increasing the power generation capability was the policy, but over the years, various 

approaches have been employed to predict power demand, each with its own set of advantages and limitations [11]. This 

section reviews some of the key methodologies used historically and their inherent challenges. 

Accurate power generation and demand predictions are essential for optimising the performance of large-scale renewable 

energy power plants. These systems must manage the inherent variability of renewable sources, such as solar and wind, 

while simultaneously addressing fluctuating energy demands throughout the day [12] The baseline energy supply must 

support daily average requirements, but energy demand can vary rapidly on an hourly basis. This necessitates the use of 

machine learning models to forecast these fluctuations effectively [13]. Accurate predictions enable power plants to 

match energy generation with consumption, thereby enhancing operational efficiency. In renewable energy systems, the 

unpredictability of energy production requires advanced strategies to predict both generation and demand [14]. These 

strategies are crucial for continuous power generation and maintaining a steady supply of energy despite the intermittent 

nature of renewable sources. Accurate forecasts allow for proactive management of energy re- sources to avoid 

disruptions [15]. Efficient operations rely on the ability to anticipate demand and adjust generation accordingly. This 

minimises waste and maximises the utilisation of renewable resources. To sustain uninterrupted operations, large-scale 

renewable power plants need accurate demand predictions to allow for the timely activation or shutdown of power 

sources, ensuring that energy generation meets real-time consumption needs. Interruptions in power generation can lead 

to significant economic consequences for domestic and commercial sectors. These disruptions can be minimised by 

improving prediction accuracy, protecting the economy and maintaining stability. Integrating machine learning models 

for predicting power generation and demand is essential for large-scale renewable energy systems. By addressing the 

challenges of fluctuating energy demand and generation, these models can enhance operational efficiency and support the 

sustainable growth of renewable energy infrastructures. The continuous advancement in predictive analytics will play a 

pivotal role in shaping the future of energy management [16]. 

Overview of Machine Learning Models for Energy Demand Prediction 

Machine learning models are used in every field. The choice is based on their learning style and application. In this 

context, the learning categories are Supervised Learning [17], Unsupervised Learning [18], Semi-Supervised Learning 

[19], Reinforcement Learning [20], Deep Learning [21], and Ensemble Methods [22]. The AI technique chosen for this 

research is supervised learning with mechanisms from a choice of Linear regression, Logistic regression, Decision trees, 

Support Vector Machines (SVM) and Neural networks. Ensemble methods combine multiple models to form a hybrid 

model to improve performance could help the prediction. Bagging reduces variance with random forest being an example 

model based on majority rule and boosting with reducing bias with AdaBoost and XGBoost as a model. 

Early approaches to energy demand prediction relied on statistical methods, including linear regression, logistic 

regression, and time-series analysis. These methods aimed to identify correlations between energy demand and 

generation considering various variables, such as hot and cold weather conditions, and seasonal day and night duration 
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[23] Linear regression models attempt to predict energy demand by fitting a linear relationship between the dependent 

variable (hot and cold weather, day and night duration) and one or more independent variables (predictors). While simple 

and easy to interpret, linear regression models assume a linear relationship between variables, which is often not the case 

in complex systems. This limitation reduces their predictive accuracy [24]. 

Logistic regression is used for binary classification problems. This method is useful for handling categorical outcomes 

but still assumes a linear relationship between the predictors and the log odds of the outcome, which may not adequately 

capture the complexities of energy demand and generation [25]. 

Time-series models, such as ARIMA (Autoregressive Integrated Moving Average), are designed to handle temporal 

dependencies in data. These models can capture trends and seasonality of energy demand but struggle with the non-linear 

interactions between multiple variables. Additionally, time-series models require large amounts of historical data and 

may not perform well with sudden and/or instantaneous changes in underlying patterns [26]. 

The introduction of machine learning (ML) in the late 20th and early 21st centuries as a technique marked a significant 

shift in energy demand and prediction methodologies. ML algorithms can handle large datasets, learn from data, and 

capture complex, non-linear relationships between variables as a dominant feature in predicting power generation and 

consumption [27]. 

Decision trees partition the data into subsets based on feature values, creating a tree-like structure of decisions that may 

suffer from overfitting and underfitting. Random forests improve decision trees by constructing multiple trees and 

aggregating their predictions to address the underfitting and overfitting issues. Random forest is a powerful method but 

can become overly complex, particularly with high-dimensional data [28]. 

Bidirectional Long Short-Term Memory (BiLSTM) networks enhance the basic LSTM model by processing data in both 

forward and backward directions. Although LSTMs are proficient in handling long-range dependencies, they typically 

process sequences in only one direction—from beginning to end (forward). While this approach works well for many 

tasks, it can be beneficial in certain applications, such as energy demand forecasting, to consider both past and future 

context [29]. Despite BILSTM potential, the model requires large amounts of data and significant computational 

resources for training and deployment [30]. 

Hybrid models, such as LSTM-CNN, combine the strengths of various techniques. LSTM-CNN models in- integrate the 

temporal sequence modelling capabilities of Long Short-Term Memory (LSTM) networks with the spatial feature 

extraction abilities of Convolutional Neural Networks (CNN). This combination enables a more comprehensive analysis 

and enhances prediction accuracy. 

Ensemble methods, including random forests and gradient boosting machines, combine the predictions of multiple 

models to improve robustness and accuracy. By leveraging the strengths of individual models, these techniques help 

reduce the risk of overfitting and enhance generalisation [31]. 

Challenges and Future Directions in Predictive Modelling for Renewable Energy 

Despite the advances in predictive modelling techniques, the accuracy of predictive models depends heavily on the 

quality and availability of data. Incomplete, inaccurate, or inconsistent data can significantly impact model performance. 

Moreover, obtaining real-time data for dynamic prediction remains a challenge [32]. Advanced machine learning and 

deep learning models, while powerful, are computationally intensive. Training these models requires substantial 

computational resources and time, which can be a barrier to their widespread adoption in operational settings [33]. 

Complex models, such as deep learning architectures, often operate as ”black boxes,” making it difficult to interpret their 

predictions. This lack of transparency can hinder trust and acceptance among stakeholders [34]. Many predictive models 

can be developed and validated using data from specific countries or regions. This can limit their generalisability where 

different environmental conditions could impact the prediction however, to prove the concept a generalisability issue 

may not be the main concern. In general, integrating predictive models with existing renewable power plants is 

challenging. Ensuring seamless interaction between predictive models and real-time decision-making processes is critical 

[35] [36]. This literature review highlights the advancements in energy generation and demand prediction models using 

Machine learning and deep learning techniques as discussed in this text. It addresses various models, including...SVMs, 

ANNs, LSTMs, CNNs, and possible hybrid models. The review also examines the broader application of AI in the power 

generation industry, emphasising its impact on predictive energy management of renewable energy generation and 
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consumption. Despite significant progress, gaps remain in the existing research. Many studies have focused on individual 

renewable energy sources or specific datasets, limiting the generalisability of the models. The integration of unstructured 

data sources is also in its early stages. This research aims to develop a predictive AI/Machine Learning and optimisation 

model that is robust and adaptable for solar energy generation and consumption. The model uses a high-dimensional real 

raw dataset from Saudi Arabia’s First Solar Plant and City Demand. The dataset will partly be used to train the data and 

partly to validate the AI model. The design is to apply and test the models discussed in this review to solar energy 

generation and consumption and compare 

and analyse parameters such as R-squared (R2), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 

Mean Absolute Percentage Error (MAPE), which are relevant to the prediction models. The out-come of the research 

proposes a model unique to solar energy that will be based on a hybrid AI/Machine Learning model to process the 

dataset, with high predictive accuracy and reliability. 

Knowledge Gaps 

The primary knowledge gap in this research is the lack of an integrated AI/Machine learning framework that predicts 

hourly energy demand and balances solar power generation while optimising the supply and demand in large-scale 

systems. 

Despite significant advancements in energy forecasting and optimisation techniques, crucial gaps re- main in applying 

AI/Machine learning technology to large-scale energy systems that lack integrated AI-driven forecasting-optimisation 

frameworks in regions with unique climatic challenges. 

The AI-driven forecasting-optimisation framework requires high-resolution datasets (hourly measurements) to capture 

rapid fluctuations and the dynamic nature of energy consumption and generation. 

A high-resolution dataset is crucial for accurately modelling an AI/Machine learning model. 

Most forecasting and optimisation models are developed for small-scale applications and are not adaptable to region-

specific climates. These models do not support large-scale energy systems. 

Methodology 

This section outlines the methodology adopted for forecasting energy demand and photovoltaic (PV) supply using 

advanced machine learning models. It details the dataset utilised, feature engineering techniques, model architectures, 

training and validation strategies, and evaluation metrics. 

Model Selection 

Time-series forecasting in energy systems necessitates models capable of capturing temporal dependencies, handling 

multivariate input, and performing well under varying seasonal conditions. The following models were selected based on 

their suitability for such tasks and documented effectiveness in similar studies [37], [38]. 

Table 1: Comparison of Machine Learning Models Used in the Study 

Model Strengths Limitations 

Long Short-Term 

Memory (LSTM) 

Effective at learning 

sequences with extensive temporal 

depths [38]. 

High computational burden and sensitivity to 

hyperparameter settings [39]. 

Bidirectional LSTM 

(BLSTM) 

Superior at understanding 

contextual relationships in data 

sequences [39]. 

Increased computational 

demand [39]. 

Gated Recurrent Unit 

(GRU) 

Requires less computational 

power, making it faster to train [37]. 

Potentially less effective at capturing very 

complex dependencies [39]. 
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Temporal Convolutional 

Network (TCN) 

Exceptional scalability 

and reduced training times [40]. 

The fixed receptive field 

may not be ideal for all time-series applications 

[41]. 

 

Dataset Description and Preprocessing 

The dataset comprises hourly solar power output, energy demand, and weather-related variables collected over one year. 

Key variables include: 

Historical Variables: Hourly solar energy production from the first large-scale solar plant and corresponding city 

electrical demand (in megawatt-hours) [37].  

Lagged Variables: Values from 1 and 24 hours prior (Lag 1H, Lag 24H) [44]. 

Preprocessing steps ensure data quality and facilitate model training. 

Data Cleaning: Missing and erroneous values were handled via linear interpolation [37]. 

Scaling: Features were normalised to a [0,1] range using MinMaxScaler, reducing the influence of features with larger 

ranges [38]. 

Windowing: Sliding windows of 24 hours were applied to structure the data for sequential input into models [40]. Figure 1 

illustrates the data split strategy for model training and validation, showing how the data is allocated over time. 

 

Figure 1: Data split strategy for model training and validation, illustrating the allocation of data over time. 

Feature Engineering 

Feature engineering was performed to enhance the dataset’s predictive power by incorporating both raw and derived 

features: 

Temporal Features: Time-based attributes such as hour of the day, day of the week, and weekend indicators were 

extracted to capture seasonal and cyclic patterns [43]. 

Lagged Features: Lag variables for solar power and energy demand were created (Lag 1H and Lag 24H) to capture 

autoregressive patterns [44]. 

Weather Interactions: Interaction features (e.g., Temperature × Humidity) were derived to account for the combined 

effects of meteorological factors [41]. 

Model Architecture and Training 

The architectures of the machine learning models were meticulously designed to address the specific challenges of time-

series forecasting in the context of energy demand and solar supply data [39], [40]. 
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Training Procedures 

The models were trained to optimise performance metrics, utilising a comprehensive set of training details that ensured 

robustness and generalisability: 

Input Representation: Each model processed multivariate input sequences with a window size of 24 hours, designed to 

capture daily cycles and trends [44]. 

Loss Function: Mean Squared Error (MSE) was employed as the primary criterion for training loss, supporting the 

minimisation of prediction errors. 

Optimiser: The Adam optimiser was chosen for its effectiveness in managing sparse gradients and its adaptability, with a 

learning rate of 10−3 [39]. 

Training Configuration: Each model underwent a training regime spanning 50 epochs, with a batch size of 32. A 

validation split of 20% was used to monitor overfitting and validate model accuracy periodically [41]. 

Data Split: To test the models’ efficacy on unseen data while preserving the integrity of temporal data sequences, a 70/30 

split was employed, allocating 70% of data to training and 30% to validation, segmented monthly [41]. 

Evaluation Metrics and Strategy 

The models were evaluated using standard regression metrics: 

− Mean Squared Error (MSE): Commonly used in energy forecasting studies [37]. 

− Mean Absolute Error (MAE): Useful for measuring absolute errors [39]. 

− Root Mean Squared Error (RMSE): Often applied in solar forecasting [38]. 

− Coefficient of Determination (R2): Helps in quantifying model fit [41]. 

Metrics were computed for each month to capture seasonal variability, and the results were averaged to identify the best-

performing models and feature sets [40]. 

Results and Discussion 

Data Acquisition and Analysis of Large-Scale Solar Supply and Urban Demand 

The analysis is based on a unique, raw dataset collected from a major solar power plant in Saudi Arabia, comprising 

hourly data on solar energy production and urban energy demand for the entire year. This high-resolution dataset 

provides detailed insights into the temporal and seasonal dynamics of large-scale solar energy supply and its interaction 

with urban demand. 

 

Figure 2: Annual and daily patterns of solar energy supply (PV) and city demand (scaled). 
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The figure highlights the temporal misalignment between midday peaks in solar energy production and evening peaks in 

urban demand, as well as seasonal variations throughout the year. 

Key Insights 

− Temporal Misalignment: The data highlights a clear mismatch between peak solar production and peak urban 

energy demand, emphasising the need for advanced storage solutions and grid management strategies to mitigate this 

imbalance. 

− Seasonal Variability: Both solar supply and city demand exhibit significant seasonal fluctuations, which are 

critical for effective long-term energy system planning and optimisation. 

− Relevance and Implications: The unique nature of this raw dataset makes it invaluable for energy research, 

particularly in developing models to predict and manage energy supply and demand in large-scale systems. By 

leveraging this data, it is possible to propose innovative strategies for energy storage, grid stability, and demand response 

that address the inherent variability in solar energy generation and urban consumption patterns. 

Machine Learning Model Selection for Prediction 

This study evaluated several advanced deep-learning architectures to determine the most effective model for forecasting 

city energy demand and photovoltaic (PV) supply loads. Based on findings from the literature, the selected models included 

Long Short-Term Memory (LSTM), Bidirectional LSTM (BLSTM), Gated Recurrent Unit (GRU), and Temporal 

Convolutional Network (TCN). Each model was carefully designed to capture the temporal dependencies inherent in the 

data. The methodology, preprocessing steps, and evaluation results are detailed below. 

The datasets for city demand and PV supply were collected at hourly intervals. Missing load values were filled using 

linear interpolation to ensure data continuity. The data was then scaled to the range [0, 1] using MinMaxScaler to standardise 

inputs and improve training efficiency. To facilitate time-series forecasting, a sliding 24-hour window was applied, using 

the previous 24 hours as features to predict the load for the next hour. This window size was chosen for its ability to 

capture short-term temporal dependencies effectively. 

Model Architectures and Parameters: Table 2 provides a summary of the architectures and hyperparameters for each model. 

These include the number and type of layers, units per layer, activation functions, and the optimiser used. All models 

employed the Adam optimiser for its ability to handle sparse gradients efficiently, while ReLU activation was used in the 

dense layers to enhance stability in predictions. These configurations were specifically tailored to balance complexity 

and performance, optimising the models for the forecasting tasks. 

Table 2: Model architectures for supply and demand forecasting 

Model Layers Units per 

Layer 

Activation Optimiser 

LSTM 2 LSTM layers, 1 Dense 

layer 

50 ReLU (Dense) Adam 

BLSTM 2 Bidirectional LSTM lay- 

ers, 1 Dense layer 

50 ReLU (Dense) Adam 

GRU 2 GRU layers, 1 Dense 

layer 

50 ReLU (Dense) Adam 

TCN 2 Conv1D layers, 2 Max- 

Pooling layers, Flatten, 1 Dense 

layer 

64 (Conv1D) ReLU Adam 

 

Model performance was evaluated using Mean Squared Error (MSE) and Mean Absolute Error (MAE). MSE was selected 

for its sensitivity to large prediction errors, providing a measure of overall accuracy, while MAE offered an interpretable 

assessment of average error magnitude. The results, as illustrated in Figure 3, show the comparative performance of the 

models across both forecasting tasks. 
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Figure 3: Machine Learning Model Selection and Evaluation 

For city demand forecasting, the BLSTM model consistently achieved the lowest MSE and MAE values, outperforming 

other models. Its bidirectional structure, which processes sequences both forwards and backward, allowed it to capture 

complex temporal patterns, particularly during high-demand periods, better than unidirectional models such as LSTM and 

GRU. 

In PV supply forecasting, both LSTM and BLSTM performed well due to their ability to retain long-term dependencies, 

a critical factor for modelling the variability of solar energy. However, the BLSTM model had a slight edge, leveraging 

its bidirectional structure to better capture broader temporal patterns, especially during rapid transitions in supply. By 

contrast, GRU and TCN models struggled with larger deviations, particularly in predicting peak and trough values. 

Overall, BLSTM was selected as the primary model for both tasks due to its consistently superior performance. As shown 

in Figure 3, its predictions closely tracked actual trends with minimal deviations, while its bidirectional architecture 

allowed it to make use of both past and future contextual information. These attributes make BLSTM particularly well-

suited for renewable-integrated energy systems, where data irregularities and complex patterns are common. 

Supply Predictions 

The dataset used in this research consists of hourly measurements of photovoltaic power output and meteorological 

conditions throughout 2021, collected from Saudi Arabia. The preprocessing phase involved several key steps to ensure 

the dataset’s integrity and its suitability for time-series analysis. First, data cleaning was performed to remove 150 records 

with erroneous power output readings, caused mainly by sensor malfunctions and data transmission errors. These 

anomalies, including abrupt drops to zero uncorrelated with weather conditions, were excluded to maintain data 

reliability. For continuous variables like irradiance and temperature, sporadic missing values were filled using linear 

interpolation to preserve the continuity essential for time-series forecasting. The data was then restructured into a 

chronological time-series format, with a date-time index based on hourly timestamps, ensuring accurate sequencing for 

prediction. 

Feature Engineering was implemented to explore the predictive power of different inputs and encapsulate dynamics affecting 

energy output. The features included: 

− Historical Data: Past power output measurements to enable the model to learn temporal patterns. 

− Weather Variables: Key meteorological factors such as temperature, humidity, atmospheric pressure, wind speed 

and direction, solar irradiance, and UV index are all hypothesised to impact photovoltaic power generation. 

− Derived Features: These included the clearness index, lagged features, and time-of-day adjustments to account 

for daily variations. 
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The predictive model utilised a Bidirectional Long Short-Term Memory (BLSTM) network, chosen for its capability to 

learn dependencies in sequential data by processing information in both forward and reverse directions. The model 

architecture comprised a BLSTM layer with 50 units and a dense output layer that produced the final power generation 

forecast. The model was compiled using the Adam optimiser with Mean Squared Error (MSE) as the loss function. 

For training and validation, the data was split monthly with a 70/30 division; 70% of the data was allocated for training, 

and 30% for validation. Transfer learning was employed, with model weights reinitialised at the start of each new month 

based on data from the previous month. This approach enabled the model to adapt to emerging trends while retaining 

historical insights. Model Evaluation Results showed robust performance across various feature combinations. As shown 

in Table 3, the results highlight the impact of feature selection on model accuracy. 

Table 3: Model performance across various feature sets. 

Supply Feature Set MSE MAE RMSE R² 

Baseline 1 (Historical) 0.0133 0.0653 0.1134 0.9152 

Baseline 2 (Historical

 & Weather) 

0.0129 0.0685 0.1115 0.9192 

Full Feature Set 0.0282 0.0957 0.1468 0.8404 

Historical & Clearness 0.0133 0.0644 0.1134 0.9153 

Historical & Humidity 0.0149 0.0695 0.1193 0.9049 

Historical & Irradiance 0.0110 0.0617 0.1032 0.9311 

Historical & Pressure 0.0139 0.0694 0.1158 0.9115 

Historical & Temperature 0.0137 0.0680 0.1155 0.9126 

Historical & UV INDEX 0.0111 0.0593 

0.1039 

0.9291  

Historical & Windspeed 0.0138 0.0661 0.1155 0.9123 

Lag Features 0.0125 0.0649 0.1100 0.9200 

Time of Day + Lag Features 0.0119 0.0600 0.1069 0.9247 

 

The baseline model, which included only historical data, achieved an R² of 0.9152. Adding basic weather information 

slightly improved this to an R² of 0.9192. The Historical & Irradiance model exhibited the best performance, achieving an 

MSE of 0.0110, MAE of 0.0617, RMSE of 0.1032, and R² of 0.9311. Similarly, the Historical & UV INDEX model 

showed high accuracy with an MSE of 0.0111, MAE of 0.0593, RMSE of 0.1039, and R² of 0.9291. Models 

incorporating lagged and temporal features consistently demonstrated high performance. 

 

Figure 4: Historical & Irradiance - Test Predictions vs Actuals 

As illustrated in Figure 4, the Historical & Irradiance model closely tracks actual power generation trends with minimal 

deviations. The model effectively captures variations caused by weather conditions, showcasing its robustness in forecasting 
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photovoltaic power output. 

Demand Predictions 

The dataset used in this demand forecasting analysis comprises hourly energy demand measurements and meteorological data 

throughout 2021, sourced from Saudi Arabia. Data preprocessing was essential to prepare the dataset for accurate time-series 

analysis. First, erroneous entries were identified and removed, ensuring the reliability of the dataset by addressing issues likely 

stemming from sensor errors or data transmission faults. Missing values, particularly in weather variables, were filled using 

linear interpolation, preserving the continuity crucial for time-series forecasting. The data was then organised into a structured, 

chronological format with a datetime index based on hourly timestamps, preserving the sequential integrity required for 

forecasting. Feature Engineering played a central role in enhancing model predictiveness, encapsulating various factors 

influencing energy demand. Key features included: 

− Historical Data: Previous energy demand values enabled the model to capture autoregressive patterns within the time 

series. 

− Weather Variables: Essential meteorological factors, such as temperature, humidity, atmospheric pressure, wind 

speed, wind direction, solar irradiance, and UV index, were included due to their anticipated impact on energy consumption 

patterns. 

− Derived Features: The clearness index (representing solar radiation effectiveness), lagged demand values, and time-of-

day adjustments were incorporated to improve the model’s understanding of consumption patterns. 

A Bidirectional Long Short-Term Memory (BLSTM) network was employed for forecasting, chosen for its ability to learn 

dependencies in sequential data by processing inputs bidirectionally. The model architecture comprised a BLSTM layer with 50 

units, designed to capture both past and future context within the time series, and a dense output layer to generate final demand 

forecasts. The model was compiled using the Adam optimiser and Mean Squared Error (MSE) as the loss function. 

For training and validation, the data was split monthly, with 70% designated for training and 30% for validation on the most 

recent data. This chronological split preserved time dependency, essential for maintaining forecasting accuracy. A transfer 

learning strategy was adopted, where model weights were reinitialised, each month using the previous month’s data, allowing 

the model to adapt to changing trends while retaining historical patterns. 

Table 4: Model performance across various feature sets for demand forecasting. 

Load Feature Set MSE MAE RMSE R² 

Baseline 1 (Historical) 0.0064 0.0621 0.0793 0.7991 

Baseline 2 (Historical

 & Weather) 

0.0086 0.0637 0.0851 0.7231 

Full Feature Set 0.0063 0.0609 0.0774 0.8013 

Historical & Clearness 0.0041 0.0459 0.0627 0.8764 

Historical & Humidity 0.0106 0.0700 0.0910 0.6806 

Historical & Irradiance 0.0054 0.0569 0.0725 0.8339 

Historical & Pressure 0.0061 0.0571 0.0760 0.8039 

Historical & Temperature 0.0057 0.0576 0.0748 0.8255 

Historical & UV INDEX 0.0049 0.0526 0.0695 0.8462 

Historical & Windspeed 0.0069 0.0619 0.0812 0.7843 

Lag Features 0.0040 0.0456 0.0616 0.8811 

Time of Day + Lag Features 0.0039 0.0448 0.0594 0.8867 
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Model Evaluation Results demonstrated strong predictive performance across different feature sets. As shown in Table 4, 

the results reveal the impact of feature selection on model accuracy: The baseline model, using only historical demand 

data, achieved an R² of 0.7991, while adding basic weather information (Baseline 2) slightly reduced accuracy to an R² of 

0.7231, indicating that weather data alone may not necessarily improve model performance linearly. The Historical & 

Clearness configuration achieved an MSE of 0.0041, MAE of 0.0459, RMSE of 0.0627, and an R² of 0.8764, leveraging 

the clearness index to capture solar irradiance effects. The Historical & UV INDEX model also performed well, achieving 

an MSE of 0.0049, MAE of 0.0526, RMSE of 0.0695, and an R² of 0.8462. Models with advanced temporal features, 

particularly the Time of Day + Lag Features model, demonstrated the highest accuracy with an MSE of 0.0039, MAE of 

0.0448, RMSE of 0.0594, and an R² of 0.8867. 

 

Figure 5: Historical & Time of Day + Lag Features vs Actuals (Short-Term) 

 

Figure 6: Historical & Time of Day + Lag Features - Test Predictions vs Actuals (Full Year) 

As illustrated in Figure 5, the Time of Day + Lag Features configuration closely tracks actual short-term demand trends, 

achieving minimal deviations even during peak periods. Over a full year, as shown in Figure 6, the model demonstrates 

robust long-term predictive capabilities, effectively aligning with observed demand patterns. These results highlight the 

importance of incorporating temporal features and derived metrics in improving forecast accuracy. 

Conclusion 

This research has demonstrated the efficacy of advanced machine learning models in forecasting and managing the balance 

between energy demand and photovoltaic (PV) supply, specifically within Saudi Arabia’s first large-scale solar farm. The 

Bidirectional LSTM (BLSTM) model, in particular, has shown superior performance, effectively capturing complex 

temporal patterns due to its ability to process data from both past and future contexts. This capability makes it an excellent 

candidate for integration into smart grid technologies, where accurate and reliable predictions are crucial for maintaining 

energy stability and optimising grid operations. 

The findings underscore the importance of sophisticated feature engineering and the strategic selection of machine 

learning models tailored to the specific characteristics of the energy dataset. By incorporating both historical and 

meteorological data, the models were able to achieve a high level of accuracy, demonstrating their potential to 

significantly contribute to the advancement of renewable energy integration within the region. 
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Future research should focus on expanding the dataset to include multi-regional data, which would help in understanding 

the models’ effectiveness across different geographical and climatic conditions. Additionally, exploring hybrid models that 

combine the strengths of various architectures could further enhance prediction accuracy and reliability. 

Ultimately, this research contributes to the growing body of knowledge that supports the transition towards more 

sustainable and resilient energy systems. By leveraging AI and machine learning, stakeholders in the energy sector can 

anticipate demand fluctuations more accurately and harness renewable energy sources more efficiently, paving the way for 

smarter energy management and a sustainable future in Saudi Arabia and beyond. 
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Appendix 

Supply Prediction Studies 

Table 5: Comparative Analysis of Machine Learning Models for Solar Energy Forecasting. 

 ML Model Used Variables Data 

Resolution 

Review 

[45] Multilayer Perceptron 

(MLP) with entity 

embedding. 

Weather variables and 

solar energy production 

metrics. 

Hourly over 2 

years 

Discusses ML models like SVM, ANN, 

hybrid learning models, and ensemble 

learning, highlighting gaps in their 

application for solar forecasting. 

[46] Hierarchical Temporal 

Convolutional Neural 

Networks (HTCNNs). 

Historical PV generation, 

weather data. 

Hourly with an 

18-hour 

forecasting 

horizon 

Compares with models like LSTM and CNN 

for regional PV forecasting and proposes 

hierarchical time-series approaches. 

[47] CNN and LSTM hybrid. Solar radiation, 

temperature, sunshine 

duration, and other 

weather parameters. 

Hourly Addresses traditional ML methods’ 

limitations and compares the hybrid CNN-

LSTM model with other DL techniques. 

[48] Ensemble of 13 ML 

techniques, including 

ANN, SVM, RF, etc. 

Temperature, humidity, 

wind speed, solar 

radiation. 

Hourly Compares the performance of various 

models like SVM, and ANN, showing 

SVM’s superior predictive capabilities. 

[13] Random Forest(RF), 

ANN, and DNN. 

Weather data recorded 

PV power output. 

Hourly Highlights limitations of simpler statistical 

models, positioning RF as effective for short-

term horizons. 

[49] LSTM,  SVM,  Graph 

Spatial-Temporal 

Attention Neural Network 

(GSTANN). 

Historical solar power 

data. 

Hourly Examines the effectiveness of LSTM and 

SVM, finding SVM most reliable. 

[50] CNN-LSTM without max 

pooling. 

Solar irradiance, 

meteorological data. 

Hourly Validates CNN-LSTM’s capability against 

typical pooling methods, showing improved 

accuracy. 

[51] LSTM and RF. Temperature, humidity, 

solar radiation, pollution. 

Hourly Compares LSTM and RF in handling large 

datasets, concluding LSTM’s superior 

performance. 

[52] Decision Tree, SVM, and 

Ensemble. 

Electricity generation, 

demand, pricing, weather 

data. 

Hourly  (2015- 

2018) 

Reviews ML models for grid reliability and 

pricing, underscoring Ensemble’s high 

accuracy. 

[13] Bidirectional Long Short-

Term Memory (BLSTM), 

Random Forest (RF), 

Temperature, humidity, 

solar radiation, wind 

speed, wind direction, 

Hourly 

averaged data 

collected at 

Evaluate BLSTM for solar power 

forecasting, finding improved accuracy (up 

to 37%) across short-term horizons (1 to 4 
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 ML Model Used Variables Data 

Resolution 

Review 

Artificial Neural 

Networks (ANN), and 

Deep Neural Networks 

(DNN). 

time of day and PV 

output (solar power 

generation data). 

15-minute 

intervals. 

hours ahead) and seasons. Highlights 

BLSTM’s effectiveness in modelling 

nonlinearity and seasonality in data. 

 

Demand Prediction Studies 

Table 6: Comparative analysis of machine learning models for electricity and energy demand prediction. 

 ML Model Used Variables Data Resolution Results 

[53] A hybrid model 

combining ANN, 

Encoder-Decoder Long 

Short-Term Memory 

(EDLSTM),   and   

Im- 

proved Complete 

Ensemble Empirical 

Mode Decomposition 

with Adaptive Noise 

(ICMD). 

Electricity demand, 

lagged time series data, 

and seasonal trends. 

Daily electricity 

demand data. 

The ICMD-ANN-EDLSTM hybrid 

model achieved a 2.82% Relative Mean 

Absolute Error, outperforming 

individual models. 

[54] Long Short-Term 

Memory (LSTM) with a 

multi-input, multi-output 

window-based 

architecture. 

Electricity demand, 

seasonal, daily, and 

interval data. 

Hourly and daily 

for different 

seasons and 

intervals. 

LSTM model showed improved accuracy 

over traditional models such as Support 

Vector Regression (SVR). 

[55] Extreme Learning 

Machine (ELM) 

optimised by Jaya  

algorithm. 

Electricity consumption, 

online search trends, 

temperature, and other 

economic in- indicators. 

Monthly 

residential 

electricity 

consumption. 

The model achieved significant 

improvements in forecasting accuracy, 

with a MAPE reduction between 

43.03%-53.92%. 

[56] XGBoost for prediction 

and K-means for 

clustering DR profiles. 

Building characteristics, 

historical demand 

response data, and DR 

profiles. 

Hourly during 

demand response 

events. 

The model estimated a demand shaving 

capacity of approximately 4.5 MWh 

annually across NYC. 

[23] Various models, 

including Neural 

Networks and Least 

Squares Support Vector 

Machines (LS-SVM). 

Hourly energy 

consumption, 

temperature, and time of 

day. 

Hourly residential 

energy 

consumption. 

LS-SVM achieved the best accuracy 

among tested models. 

[57] Artificial Neural 

Networks (ANN), 

Multivariate Adaptive 

Regression Splines 

(MARS), and Hybrid 

ANN. 

Electricity demand, 

climate variables from 

SILO and ECMWF 

datasets. 

6-hour and daily 

pre-dictions. 

Hybrid ANN achieved a Relative Root 

Mean Square Error (RRMSE) of 3.85% 

for 6-hour predictions. 

[58] Hybrid Prophet-Gated 

Recurrent Unit (GRU) 

model. 

Hourly historical 

consumption data for 

water and electricity; 

auxiliary variables 

derived from 

Hourly, with data 

collected from six 

households. 

The combined model achieved improved 

pre-diction accuracy with R2 gains of 

29.2% for water and 48.5% for 

electricity over single-resource models. 
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 ML Model Used Variables Data Resolution Results 

consumption patterns. 

[59] Decision Trees, Support 

Vector Machines (SVM), 

and Artificial Neural 

Networks (ANN). 

Outdoor temperature, 

solar radiation, time of 

day, non-working hours, 

weekend  

indicators. 

Short-term (hours 

to days), using 10-

minute interval 

data. 

ML models (especially Decision Trees) 

outperformed traditional linear 

regressions, showing potential for 

deployment in predictive control 

applications. 

 


